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2.8 CONCLUSIONS

In this chapter, we derived a simple identification scheme for SISO LTI
plants. The scheme involved a generic linear error equation, relating the
identifier error, the regressor and the parameter error. Several gradient
and least-squares algorithms were reviewed and common properties were
established, that are valid under general conditions. It was shown that
for any of these algorithms and provided that the regressor was a
bounded function of time, the identifier error converged to zero as ¢
approached infinity. The parameter error was also guaranteed to remain
bounded. When the regressor was not bounded, but satisfied a regularity
condition, then it was shown that a normalized error still converged to
Zero.

The exponential convergence of the parameter error to its nominal
value followed from a persistency of excitation condition on the regres-
sor. Guaranteed rates of exponential convergence were also obtained
and showed the influence of various design parameters. In particular,
the reference input was found to be a dominant factor influencing the
parameter convergence.

The stability and convergence properties were further extended to
strictly positive real error equations. Although more complex to analyze,
the SPR error equation was found to have similar stability and conver-
gence properties. In particular, PE appeared as a fundamental condition
to guarantee exponential parameter convergence.

Finally, the PE conditions were transformed into conditions on the
input. We assumed stationarity of the input, so that a frequency-domain
analysis could be carried out. It was shown that parameter convergence
was guaranteed, if the input contained the same number of spectral com-
ponents as there were unknown parameters. If the input was a sum of
sinusoids, for example, their number should be greater than or equal to
the order of the plant.

CHAPTER 3
ADAPTIVE CONTROL

3.0 INTRODUCTION

In this chapter, we derive and analyze algorithms for adaptive control.
Our attention is focused on model reference adaptive control. Then, the
objective is to design an adaptive controller such that the behavior of
the controlled plant remains close to the behavior of a desirable model,
despite uncertainties or variations in the plant parameters. More for-
mally, a reference model M is given, with input r(z) and output y,(?).
The unknown plant P has input u(¢) and output y,(¢). The control
objective is to design u(¢) such that y,(t) asymptotically tracks ym(t),
with all generated signals remaining bounded.

We will consider linear time invariant systems of arbitrary order,
and establish the stability and convergence properties of the adaptive
algorithms. In this section however, we start with an informal discus-
sion for a first order system with two unknown parameters. This will
allow us to introduce the algorithms and the stability results in a simpler
context.

Consider a first order single-input single-output (SISO) linear time
invariant (LTI) plant with transfer function

P

= (3.0.1)
s+ a,

3

where k, and a, are unknown. The reference model is a stable SISO
LTI system of identical order
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N k
M = - (3.0.2)
S+ Ay

where k,, and a,,> 0 are arbitrarily chosen by the designer. In the time
domain, the plant is described by

}')p(t) = — a4 yp(t) + kp u(t) (303)
and the reference model by
Ym(t) = = @ ym(t) + Ky r(t) (3.0.4)

The next steps are similar to those followed for model reference
identification in Section 2.0. Let the control input be given by

u(t) = colt) r(t) + dolt) yp(t) (3.0.5)
the motivation being that there exist nominal parameter values
* km * ap - A
g = — dy = L= (3.0.6)
kP kP

such that the closed-loop transfer function matches the reference model
transfer function. Specifically, (3.0.3) and (3.0.5) yield

p(t) = = ap yp(t) + ky (cot) r(e) + dolt) yu(t))
= (ap = ky dolt) ) yp(t) + kp colt) r(t) (3.0.7)

which becomes
Vp(t)

when ¢q(t) = ¢g, dolt) = dp.
For the analysis, it is convenient to introduce an error formulation.
Define the output error

[}

— a4 yp(t) + km r(t) (308)

. €0 = Vp = Vm (309)
and the parameter error

[ (1) ] co(t) - ¢g
¢ = - (3.0.10)

(1) dot) - dg
Subtracting (3.0.4) from (3.0.7)

ey = = Vp = Ym) + (@m ~ ap + ky do) y, + ky cor = kpy 1
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~anea+ky [(Co - ) + (o - d3), ]

- am eg + ky(¢,r + ¢, V) (3.0.11)

We may represent (3.0.11) in compact form as

k, /
€y = s+ a, (¢rr + ¢y yp)
1

k, - -
= LM @Gr+dyy) = — M (Gr+,) (3.0.12)

Although this notation will be very convenient in this book, we caution
the reader that it mixes time domain operations (¢, r + ¢, ¥p) and filter-
ing by the LTI operator M.

Equation (3.0.12) is of the form of the SPR error equation of
Chapter 2. Therefore, we tentatively choose the update laws

Co = —gegr
d'o = -geyy g>0 (3.0.13)

assuming that k,/k, >0 and that M is SPR. The first condition
requires prior knowledge about the plant (sign of the high frequency gain
ky), while the second condition restricts the class of models which may
be chosen.

Note that there is a significant difference with the model reference
identification case, namely that the signal ¥, which appears in (3.0.12) is
not exogeneous, but is itself a function of e;. However, the stability
proof proceeds along exactly the same lines. First assume that r is
bounded, so that y,, is also bounded. The adaptive system is described
by (3.0.3)-(3.0.5) and (3.0.13). Alternatively, the error formulation is

éO = —4ayéy+ kp(¢rr + ¢y €y + ¢y ym)
d;r = —8ér
by = -8} - geoym (3.0.14)

In this represéntation, the right-hand sides only contain states (eq, ¢,, ¢y)
and exogeneous signals (r, y,,). Consider then the Lyapunov function
I4
2

e
v(eO) ¢r’ d)y) = 0

kp 2 2
5+ g 6+ ) (3.0.15)
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so that, along the trajections of (3.0.14)
vV = —anel +k, ¢, eqr+k, b, 8 +kydyeqm
- k,, ¢, eor - k,, by e& - kp @y €0 Vm

= —anef <0 : (3.0.16)
It follows that the adaptive system is stable (in the sense of Lyapunov)
and that, for all initial conditions, ey, ¢, and ¢, are bounded. From
(3.0.14), é4 is also bounded. Since v is monotonically decreasing and
bounded below, limv(t) as ¢ -—»oo exists, so that eye L,. Since

epe LN Loo, and ép € Loo, it follows that e — 0 as ¢ - oo.

The above approach is elegant, and relatively simple. However, it
is not straightforward to extend it to the case when the relative degree of
the plant is greater than 1. Further, it places restrictions on the refer-
ence model which are in fact not necessary. We now discuss an alter-
nate approach which we will call the input error approach. The resulting
scheme is slightly more complex for this first order example, but has
significant advantages, which will be discussed later.

Instead of using eq in the daptation procedure, we use the error
ey = oy + do M(y,) - M(u) (3.0.17)

The motivation behind this choice will be made clear from the analysis.
Equation (3.0.17) determines how e, is calculated in the implementation
(as (3.0.9) in the output error scheme). For the derivation of the adapta-
tion scheme and for the analysis, we relate e, to the parameter error (as
(3.0.12) in the output error scheme). First note that

B oe Km_n o sta Kk
S+ am ky s+ay s+a
kp Kk, kyw ap-an k

ky, s+a, k, s+a, s+a,

M LY
kp P

= coP+dyMP (3.0.18)
where we used (3.0.6). Therefore, applying (3.0.18) to the signal u
M@u) = cgy, + ds M(y,) (3.0.19)
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and with (3.0.17)

(co - €0 )y, + (do — dg) M(y,)

b Vp + by M(¥,) (3.0.20)

Equation (3.0.20) is of the form of the linear error equation studied in
Chapter 2. Therefore, we may now use any of the identification algo-
rithms, including the least-squares algorithms. No condition is posed on
the reference model by the identification/adaptation algorithm. Proving
stability is however more difficult, and is not addressed in this introduc-
tion.

The algorithms described above are both direct algorithms, for
which update laws are designed to directly update the controller parame-
ters ¢ and dy. An alternate approach is the indirect approach. Using
any of the procedures discussed in Chapter 2, we may design a recursive
identifier to provide estimates of the plant parameters k, and a,. If k,
and a, were known, the equations in (3.0.6) would determine the nomi-

€

nal controller parameters ¢y and d;. In an indirect approach, one
replaces k, and g, in (3.0.6) by their estimates, thereby defining ¢q and
do. This is a very intuitive approach to adaptive control which we will
also discuss in this chapter.

After extending the above algorithms to more general schemes for
plants of arbitrary order, we will study the stability and convergence pro-
perties of the adaptive systems. Unfortunately, the simple Lyapunov
stability proof presented for the output error scheme does not extend to
the general case, or to the other schemes. Instead, we will use tools from
functional analysis, together with a set of standard lemmas which we will
first derive. The global stability of the adaptive control schemes will be
established. Conditions for parameter convergence will also follow,
together with input signal conditions similar to those encountered in
Chapter 2 for identification.

3.1 MODEL REFERENCE ADAPTIVE CONTROL PROBLEM

We now turn to the general model reference adaptive control problem
considered in this chapter. The following assumptions will be in effect.

Assumptions -

(A1) Plant Assumptions
The plant is a single-input, single-output (SISO), linear time-
invariant (LTI) system, described by a transfer function



104 Adaptive Control Chapter 3
28 by -k, 2 (3.1.1)
a(s) dp(s)

where 7i,(s), c?,,(s) are monic, coprime polynomials of degree m
and n, respectively. The plant is strictly proper and minimum
phase. The sign of the so-called high-frequency gain k, is
known and, without loss of generality, we will assume k, > 0.
(A2) Reference Model Assumptions
The reference model is described by
Im(S) M) = k, ’jm(s)
F(s) dm(s)
where 7,,(s), c?m(s) are monic, coprime polynomials of degree
m and n respectively (that is, the same degrees as the
corresponding plant polynomials). The reference model is
stable, minimum phase and k,,, > 0.
(A3) Reference Input Assumptions
The reference input r(.) is piecewise continuous and bounded
onR,.

(3.1.2)

Note that 13(s) is assumed to be minimum phase, but is nor assumed to
be stable.

3.2 CONTROLLER STRUCTURE

To achieve the control objective, we consider the controller structure
shown in Figure 3.1.

)
r u A Yp
— + -[ > P(s) -

8s1 s

| s Ais)le

Figure 3.1: Controller Structure

By inspection of the figure, we see that

u = cor+ —C:-(ﬂ(u) + ifle p) (3.2.1)
A(s) A(s)
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where ¢q is a scalar, é(s), c?(s) and X (s) are polynomials of degrees
n-2,n-1and n - 1, respectively. From (3.2.1),

U = — (cor+%(yp)) (3.2.2)

é
which is shown in Figure 3.2.

. |
P [aaal Yo
— ®— A/3-¢ > >

o>

Figure 3.2: Controller Structure—Equivalent Form

Since

n
Vo = ky=-(u) (3.2.3)
dp
the transfer function from r to y, is

Jo _ __CokoAy (3.2.4)
P \-8&)d,-k,h,d
Note that the derivation of (3.2.4) relies on the cancellation of
polynomials A (s). Physically, this would correspond to the exact cancel-
lation of modes of ¢(s)/ x (s) and d (s)/ x (s). For numerical considera-
tions, we will therefore require that x (s) is a Hurwitz polynomial.

The following proposition indicates that the controller structure is
adequate to,achieve the control objective, that is, that it is possible to

make the transfer function from r to ¥p equal to M (s). For this, it is

clear from (3.2.4) that X(s) must contain the zeros of 7,,(s), so that we
write

N X(S) = No(s)Am(s) (3.2.5)

where X 0(s) is an arbitrary Hurwitz polynomial of degree n - m — 1.

3
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Proposition 3.2.1 Matching Equality

There exist unique c§, ¢*(s), d*(s) such that the transfer function from
r—y,is M(s).

Proof of Proposition 3.2.1
1. Existence

The transfer function from r to y, is M if and only if the following
matching equality is satisfied

- - “ k, -« “
(A-¢")d, -k, fi,d" = k—” Nofipdy (3.2.6)
The solution can be found by inspection. Divide >:0a7,,, by d,, let g be
the quotient (of degree n —m - 1) and - k,d* the remainder (of degree

n-1). Thus d* is given by

- 1 s o~ A
d* = 7c: (Ggdy-Xodn) (3.2.7)
Let ¢” (of degree n - 2), ¢j be given by
&' = X-q#n, (3.2.8)
k
¢ = —k% (3.2.9)

Equations (3.2.7)-(3.2.9) define a solution to (3.2.6), as can easily be
seen by substituting ¢, ¢* and d* in (3.2.6).
2. Uniqueness

Assume that there exist ¢y = c§ +8co, ¢ =¢"+6¢,d =d*+6d satisfy-
ing (3.2.6). The following equality must then be satisfied

A - k, ~ -
8¢d, + k,n,6d = -acok—” Nofydm (3.2.10)
m

Recall that c?,,, Ay, ):0 and c?,,, have degrees n, m, n-m -1 and n,
respectively, with m < n -1, and ¢ and 64 have degrees at most n — 2
and n - 1. Consequently, the right-hand side is a polynomial of degree
2n -1 and the left-hand side is a polynomial of degree at most 27 - 2.
No solution exists unless dco = 0, so that ¢§ is unique. Let, then,
dco = 0, so that (3.2.10) becomes
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3 _ oo _p (3.2.11)
od d,

This equation has no solution since Ay, d,, are coprime, so that ¢* and
d are also unique. 0

Comments

a)  The coprimeness of 7,, (?,, is only necessary to guarantee a unigue
solution. If this assumption is not satisfied, a solution can still be found
using (3.2.7)—(3.2.9). Equation (3.2.11) characterizes the set of solutions
in this case.

b)  Using (3.2.2), the controller structure can be expressed as in Figure

3.2, with a forward block A/X-¢ and a feedback block d /X\. When
matching with the model occurs, (3.2.7), (3.2.8) show that the compensa-
tor becomes

X o i
A Lo (3.2.12)
x-ét i,
and
j* jd,-Xod
d’ _ 1 44 - Rodm (3.2.13)

): k[’ )‘Oﬁm
Thus the forward block actually cancels the zeros of P and replaces them
by the zeros of M.
¢) The transfer function from r to ¥p is of order n, while the plant
and controller have 3n -2 states. It can be checked (see Section 3.5)
that the 2n -2 extra modes are those of A, A, and fi,. The modes

corresponding to X, >\0 are stable by choice and those of 7, are stable by
assumption (Al).

d)  The structure of the controller is not unique. In particular, it is
equivalent to the familiar structure found, for example, in Callier &
Desoer [1982], p. 164, and represented in Figure 3.3. The polynomials
found in this case are related to the previous ones through

Aie = coh d. = X-¢ Ar = -d (3.2.14)
The motivation in using the previous controller structure is to obtain an

expression that is /inear in the unknown parameters. These parameters

are the coefficients of the polynomlals ¢, d and the gain cg. The expres-
sion in (3.2.1) shows that the control signal is the sum of the parameters
multiplied by known or reconstructible signals.
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Y
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Figure 3.3: Alternate Controller Structure

State-Space Representation
To make this more precise, we consider a state-space representation of
the controller. Choose A € R*~!*"-! and b, € R""!, such that

(A, b)) is in controllable canonical form as in (2.2.9) and det
(sI = A) = X(s). It follows that

1
X (s)
)

(I -A)'by = (3.2.19)

n-2

Let ¢ € R""! be the vector of coefficients of the polynomial é(s), so
that

LB T(r-a) b, (3.2.16)
As)
Consequently, this transfer function can be realized by

WO = Awh 4 by
L) = cTw® (3.2.17)
A
where the state w(") ¢ IR""! and the initial condition w{’(0) is arbi-
trary. Similarly, there exist dy € R andd € R"~!, such that

4e)

= = do+dT(sI-A)"'b, (3.2.18)
AS)

and

WO = AW 4 by,
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-

4 0p) = doy, +dTw? (3.2.19)
A

where the state w® e IR"~! and the initial condition w'®(0) is arbi-
trary. The controller can be represented as in Figure 3.4, with

%

-

y

(si-n Yo

A

wl2

Figure 3.4: Controller Structure—Adaptive Form

u = cor + cTw + doy, + dTw?®
= 0"w (3.2.20)
where
07 := (cg,07) = (co,cT,dg,dT) e R¥™  (3.2.21)

is the vector of controller parameters and
wle= (r,w7):= (r,w(l)r,yp,w(z)r) e R¥ (3.2.22)

is a vector of signals that can be obtained without knowledge of the

plant parameters. Note the definitions of § and W which correspond to
the vectors § and w with their first components removed.

In analogy to the previous definitions, we let
0" 1= (c3,0°") = (c§,c*,d3,d") e R (3.2.23)

be the vector of nominal controller parameters that achieves a matching

of the transfer function r—y, to the model transfer function M. We
also define the parameter errors

¢ = 0-60 e R $:=0-0* e R¥”-! (3.2.24)
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The linear dependence of u on the parameters is clear in (3.2.20).
In the sequel, we will consider adaptive control algorithms and the

parameter § will be a function of time. Similarly, ¢(s), E(s) will be poly-
nomials in s whose coefficients vary with time. Equations (3.2.17) and
(3.2.19) give a meaning to (3.2.1) in that case.

3.3 ADAPTIVE CONTROL SCHEMES

In Section 3.2, we showed how a controller can be designed to achieve
tracking of the reference output y, by the plant output y,, when the
plant transfer function is known, We now consider the case when the
plant is unknown and the control parameters are updated recursively
using an identifier. Several approaches are possible. In an indirect
adaptive control scheme, the plant parameters (i.e., k, and the

coefficients of 7,(s), d,(s)) are identified using a recursive identification
scheme, such as those described in Chapter 2. The estimates are then
used to compute the control parameters through (3.2.7)-(3.2.9).

In a direct adaptive control scheme, an identification scheme is
designed that directly identifies the controller parameters ¢g, ¢, dy and
d. A typical procedure is to derive an identifier error signal which
depends linearly on the parameter error ¢. The output error
eo(t) = y,(t) - ym(t) is the basis for output error adaptive control
schemes such as those of Narendra & Valavani [1978], Narendra, Lin, &
Valavani [1980], and Morse [1980]. An output error direct adaptive
control scheme and an indirect adaptive control scheme will be
described in Sections 3.3.2 and 3.3.3, but we will first turn to an input
error direct adaptive control scheme in Section 3.3.1 (this scheme is dis-
cussed in Bodson [1986] and Bodson & Sastry [1987]).

Note that we made the distinction between controller and
identifier, even in the case of direct adaptive control. The controller is
by definition the system that determines the value of the control input,
using some controller parameters as in a nonadaptive context. The
identifier obtains estimates of these parameters—directly or indirectly.

As in Chapter 2, we also make the distinction, within the identifier,
between the identifier structure and the identification algorithm. The
identifier structure constructs signals which are related by some error
equation and are to be used by the identification algorithm. The
identification algorithm defines the evolution of the identifier parame-
ters, from which the controller parameters depend. Given an identifier
structure with linear error equation for example, several identification
algorithms exist from which we can choose (cf. Section 2.3).

Although we make the distinction between controller and identifier,
we will see that, for efficiency, some internal signals will be shared by
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both systems.

3.3.1 Input Error Direct Adaptive Control

Define
r, = M7'\,) = M~'P(u) (3.3.1)
and let the input error e; be defined by
e = rp,-r
= M7 'Gpy-ym) = M (eo) (3.3.2)

where ey = y, - y,, is the output error.

By definition, an input error adaptive control scheme is a scheme
based on this error, or a modification of it.

Input Error and Linear Error Equation

The interest of the input error in (3.3.2) is to lead to a linear error equa-

tion such as studied in Section 2.3 in the context of identification. We

first present an intuitive derivation of this linear error equation.
Consider the matching equality (3.2.6), and divide both sides by

Nd,. Using (3.2.5)

-~

A i, 40 k,n d
- & el o e (3.3.3)
A d, A dy  Knhip
With the definitions of 2 and M , (3.3.3) becomes
ARy Py ) (3.3.4)
A A

We may interpret this last equality as an equality of two polynomial
ratios, but also as an equality of two LTI system transfer functions.
Applying both transfer functions to the signal u, we have
6‘ (;"
- W) - —=
A A
Now, we recall that # e IR*" - | is given by
- (I - A) 'by(u)
W =

u - 0p) = M ™', (3.3.5)

¥ (3.3.6)
(I - A) by

so that, with (3.3.5)
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o= Swyr Ly
X Y
= u~-cyM ' (y,) (3.3.7)
The control input is given by (3.2.20)
u =06"Tw = c0r+e'T;; (3.3.8)

so that

o o .
8" W = cor + 807w -cg M (v,

co(r=M ")) + 87w + (co-cd) M ™' (v))
—coe; + 0T W + (co—ca)M'l(yp) (3.3.9)
We now define the signal

2T = W'y = (M), wT) e R™ (3.3.10)
so that (3.3.9) becomes

il

e = zlgquz (3.3.11)

This equation is of the form of the linear error equation studied in Sec-
tion 2.3 (the gain 1/¢q being known may be merged either with ¢; or z,
as will be seen later). It could thus be used to derive an identification
procedure to identify the parameter § directly. As presented, however,
the scheme and its derivation show several problems:

a) Since the relative degree of M is at least 1, its inverse is not
proper. Although M ~!() is well defined, provided that the argument is

sufficiently smooth, the gain of the operator M !is arbitrarily large at
high frequencies. Therefore, due to the presence of measurement noise,

the use of M ™' is not desirable in practice. Although we will use
M ~1() in the analysis, we will consider it not implementable, so that I
and e; are not available,

b)  The derivation of the error equation (3.3.11) relies on (3.3.8) being
satisfied at all times. Although this is not a crucial problem, we will dis-
cuss the advantages of avoiding it.

¢) We were somewhat careless with initial conditions, going from
(3.3.4) to (3.3.5), since P may be unstable.
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We now derive a modified input error, leading to a scheme that
does not have the above disadvantages a) and b), and resolve the techni-
cal question in ¢).

Fundamental Identity

Since M is minimum phase with relative degree n — m, for any stable,
minimum phase transfer function L ~! of relative degree n - m, the
transfer function M L has a proper and stable inverse. For example, we

can let L be a Hurwitz polynomial of degree n — m. The signal L-! (rp)
is available since

L' = ML) ') (3.3.12)

where (Mi)“ ! is a proper, stable transfer function.

Divide both sides of (3.2.6) by X c?,,I: so that it becomes, using
(3.2.5) and the definitions of P and M,

-~

L4

Ps

A

Consider (3.3.13) as an equality of two transfer functions. The right-
hand side is a stable transfer function, while the left-hand side is possi-

bly unstable (since P is not assumed to be stable).

To transform (3.3.13) into an equality in the time domain, care
must be taken of the effect of the initial conditions related to the

unstable modes of 2. These will be unobservable or uncontrollable,
depending on the realization of the transfer function. If the left-hand

side is realized by P followed by

veyMLY-Y B = L' -L-'E

(3.3.13)

P

L'ld

-~

*

+ cy(ML)"!

the unstable modes of P will be controllable and, therefore, unobserv-
able.

The operator equality (3.3.13) can then be transformed to a signal
equality by applying both operators to #, so that
“; Oy + (ML) ' (y,) = L")~ L ‘1% () + () (3.3.14)

L’“—l

where ¢(¢) reminds us of the presence of exponentially decaying terms
due to initial conditions. These are decaying because the transfer func-
tions are stable and the unstable modes are unobservable. Therefore,
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(3.3.14) is valid for arbitrary initial conditions in the realizations of
L' X,and (ML) ".
Since 6 * is constant, § * L ~' (¥ ) is given by

iYL W) = L@ w)

% T

Sy L (y,,)]
A A

l’;~l

L ') - cd(ML) '(y) + (1)

| where we used (3.3.14). Define now

(3.3.15)

LT = [L“-'(rp),li-'(wT)] = [(Mi)-'(y,,),i“(wr)] e R (3.3.16)
so that (3.3.15) can be written
L 'w) = 0% v #et)

where 8° is defined in (3.2.7)~(3.2.9), with (3.2.23). Equation (3.3.17) is
essential to subsequent derivations, so that we summarize the result in
the following proposition.

(3.3.17)

Proposition 3.3.1 Fundamental Identity

Let P and M satisfy assumptions (A1) and (A2). Let L ~! be any stable,

‘ minimum phase transfer function of relative degree n - m. Let v and w
be as defined by (3.3.16) and (3.3.6), with arbitrary initial conditions in

~ the realizations of the transfer functions. Let 8* be defined by (3.2.7)-
( (3.2.9), with (3.2.23).

Then  for all piecewise continuous # € Loo o (3.3.17) is satisfied.

Input Error Identifier Structure

Equation (3.3.17) is of the form studied in Section 2.3 for recursive

identification. Both the signal L ~'(u) and v are available from meas-

urements, and the expression is linear in the unknown parameter §*.
Therefore, we define the modified input error to be

ey := 0Ty — L~ '(u)

so that, using (3.3.17)

(3.3.18)

e, oTv + (1) (3.3.19)
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which is of the form of the linear error equation studied in Section 2.3.
Although we considered the input error ¢; not to be available, because it
would require the realization of a nonproper transfer function, the

approximate input error ¢,, and the signal v are available, given these
considerations.

We also observed in Chapter 2 that standard properties of the
identification algorithms are not affected by the «(¢) term. For simpli-
city, we will omit this term in subsequent derivations. We now consider
the practical implementation of the algorithm, with the required assump-
tions.

Assumptions

The algorithm relies on assumptions (A1)-(A3) and the following addi-
tional assumption.

(Ad) Bound on the High-Frequency Gain

Assume that an upper bound on k, is known, that is, that
kp < K max for some k gy

The structure of the controller and identifier is shown in Figure 3.5,
while the complete algorithm is summarized hereafter. The need for
assumption (A4), and for the projection of ¢, will be discussed later, in
connection with alternate schemes. It will be more obvious from the
proof of stability of the algorithm in Section 3.7.

Input Error Direct Adaptive Control Algorithm—Implementation
Assumptions
(A1)-(A4)
Data
n ] m bl kmax
Input
r(t), y(t) € R
Output
u(t) e R
Internal Signals
w(t) e R [wi(), wP(r) e R" ]
8(t) e R™ [co(r), dolt) e R, (1), d(t) e R"']
v()e R, ex(t)e R

Initial conditions are arbitrary, except co(0) = Cmin = Kn/K max > 0.
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Figure 3.5:

Adaptive Control

o>

Design Parameters
Choose

« M (ie. Ky, A, dy) satisfying (A2).

A e R""-1 p e R"-!in controllable canonical form,

Chapter 3

y

(sl-A)" b

A

(2)

ez

Controller and Input Error Identifier Structures

such that det (s/ - A) is Hurwitz and contains the zeros of #,,(s).

o« L1 stable, minimum phase transfer function of relative degree
n-m.
e g,v>0.
Controller Structure

W
w?

= Aw 4 pu

= Aw®@ 4 by,
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07 = (co,cT,dy,dT)
wl = (r,wy,, w®)
u =6"w
Identifier Structure
= (ML) ), L™y, L), L (w@)]
ey =0"v-L ')
Normalized Gradient Algorithm with Projection

0- erv
- ¢ L+yvly
if co = cmin and ¢g<0 , then set ¢y = 0.
O
Comments

Adaptive Observer

The signal generators for w!") and w®® ((3.2.17) and (3.2.19)) are almost
identical to those used in Chapter 2 for identification of the plant
parameters (their dimensions are now »n -1 instead of »n previously).
They are shared by the controller and the identifier. The signal genera-

tors (sometimes called state-variable filters) for w1 and w'® form a gen-
eralized observer, reconstructing the states of the plant in a specific
parameterization. This parameterization has the characteristic of allow-
ing the reconstruction of the states without knowledge of the parameters.
The states are used for the state feedback of the controller to the input
in a certainty equivalence manner, meaning that the parameters used for
feedback are the current estimates multiplying the states as if they were
the true parameters. The identifier with the generalized observer is
sometimes called an adaptive observer since it provides at the same time
estimates of the states and of the parameters.

Separation of Identification and Control

Although we have derived a direct adaptive control scheme, the
identifier and the controller can be distinguished. The gains ¢g, ¢, d,
and d serving to generate u are associated with the controller, while
those used to compute e, are associated with the identifier. In fact, it is
not necessary that these be identical for the identifier error to be as
defined in (3.3.19). This is because (3.3.19) was derived using the fun-
damental identity (3.3.17), which is valid no matter how u is actually
computed. In other words, the identifier can be used off-line, without
actually updating the controller parameters if necessary. This is also
useful, for example, in case of input saturation (cf. Goodwin & Mayne
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[1987]). If the actual input to the LTI plant is different from the com-

puted input u = 67w (due to actuator saturation, for example), the
identifier will still have consistent input signals, provided that the signal
u entering the identifier is the actual input entering the LTI plant.

3.3.2 Output Error Direct Adavotive Control

An output error scheme is based on the output error eg = y, - y,,. Note
that by applying M L to both sides of (3.3.17), we find

M) = c§y, + M@*'W) (3.3.20)

As before, the control input u is set equal to u = §7 w, but now,
this equality is used to derive the identifier error equation
1 - Tl — “
e0=yp—ym=":'M(u'0 W)"M(r)
co

= L M co-ctyr+ (FT-T""yw)
o)

= L are™w (3.3.21)
¢
which has the form of the basic strictly positive real (SPR) error equa-
tion of Chapter 2. The gradient identification algorithms of Section 2.6
can therefore be used, provided that M is SPR. However, since this
requires M to have relative degree at most 1, this scheme does not work
for plants with relative degree greater than 1.

The approach can however be saved by modifying the scheme, as
for example in Narendra, Lin, & Valavani [1980]. We now review their
scheme for the case when the high-frequency gain k, is known, and we
let ¢ = ¢f.

The controller structure of the output error scheme is identical to

the controller structure of the input error scheme, while the identifier
structure is different. It relies on the identifier error

el = ~ML(ETT-v7Tve,) (3.3.22)

€5
which is now of the form of the modified SPR error equation of Chapter
2. As previously, v is identical to v, but with the first component

removed. Practically, (3.3.22) is not implemented as such. Instead, we
use (3.3.17) to obtain

Section 3.3 Adaptive Control Schemes 119
ey = ~ML@ETV-L ')+ ML) ') - v7 V)

Yy - L M@y + S ML@TL @) -7 Te)  (3323)

e (4

. . =T —
As before, the control signal is set equal to u = 7w = eor + 0w,
and the equality is used to derive the error equation for the identifier

€y

1

Yo = M(r) - = M@ETW)+ = ML@ETL F) - vV T er)
€o <o

Y = ym - = ME(L1 T - GTL)(@) +¥TTTe) (33.24)
¢

Again, the identifier error involves the output error €o = yp = Vm- The7
additional term, which appeared starting with the work of Monopoli
[1974], is denoted

Vo = SME(L'8T -4TL Y@) + 17 Ve) (33.25)
¢6
and the resulting error €, = Y, — Y, — Va is called the augmented error, in
contrast to the original output error ¢g = ¥Vp = Vm-
The error (3.3.22) is of the form of the modified SPR error equa-

tion of Chapter 2 provided that ML is a strictly ppsitive real. tran§fer
function. If this condition is satisfied, the properties pf the identifier
will follow and are the basis of the stability proof of Section 3.7.

Assumptions '
The algorithm relies on assumptions (A1)-(A3) and the following
assumption.
(AS) High-Frequency Gain and SPR Assumptions X
Assume that k, is known and that there exists L~ !, a stable,
minimum phase transfer function of relative degree n —m — 1,
such that ML is SPR.
The practical implementation of the algorithm is summarized hereafter.

Output Error Direct Adaptive Control Algorithm—Implementation

Assumptions
(A1)-(A3), (AS) p
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Data
n,m,k,
Input

r(t), y(t) e R

Output
u(t) e R

Internal Signals
w(t)e R [wD), wP()e R" 1]
0(t)e R¥™ 1 [(c(t),d(t) e R"™!, dy(t) € IR]
v(t)e R*"-!

eit), ya(t), ym(t) e R

Initial conditions are arbitrary.
Design Parameters

Choose

o M (i.e. ky, Aim, dy) satisfying (A2) and (AS).

« A e R*-!'*"-1 b e IR""! in controllable canonical form,
such that det (s/ - A) is Hurwitz, and contains the zeros of #,,(s).

« L} stable, minimum phase transfer function of relative degree
n-m -1, such that ML is SPR.

« g,v>0.
Controller Structure

w® = Aw by

w® = Aw®+ by,

87 = (cT,dy,d")
BT = (W, W)
¢y =kn/k,>0

u=chr+6’w

Identifier Structure
7T =L-Y(w)
Ym = M(r)

Vo = %MI:(I:"(ETW)—WL"I(W)-wTVel)
Co
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€1 =Yp—VYm—Va
Gradient Algorithm

0 = —ge\v
O

Differences Between Input and Qutput Error

Traditionally, the starting point in the derivation of model reference
adaptive control schemes has been the output error ey = y, — Y. Using
the error between the plant and the reference model to update controller
parameters is intuitive. However, stability proofs suggest that SPR con-
ditions must be satisfied by the model and that an augmented error
should be used when the relative degree of the plant is greater than 1.
The derivation of the input error scheme shows that model reference
adaptive control can in fact be achieved without formally involving the
output error and without SPR conditions on the reference model.

Important differences should be noted between the input and out-
put error schemes. The first is that the derivation of the equation error
(3.3.24) from (3.3.22) relies on the input signal u being equal to the

computed value # = 67 w, at all times. If the input saturates, updates of
the identifier will be erroneous. When the input error scheme is used,
this problem can be avoided, provided that the actual input entering the
LTI plant is available and used in the identifier. This is because (3.3.19)
is based on (3.3.17) and does not assume any particular value of u. If
needed, the parameters used for identification and control can also be
separated, and the identifier can be used “off-line.”

A second difference appears between the input and output error
schemes when the high-frequency gain k, is unknown, and the relative
degree of the plant is greater than 1. The error e, derived in (3.3.22) is

not implementable if ¢§ is unknown. Although an SPR error equation
can still be obtained in the unknown high-frequency gain case, the solu-
tion proposed by Morse [1980] (and also Narendra, Lin, & Valavani
[1980]) requires an overparameterization of the identifier which excludes
the possibility of asymptotic stability even when persistency of excitation
(PE) conditions are satisfied (cf. Boyd & Sastry [1986], Anderson, Dasg-
upta, & Tsoi [1985]). In view of the recent examples due to Rohrs, and
the connections between exponential convergence and robustness (see
Chapter 5), this appears to be a major drawback of the algorithm.

Another advantage of the input error scheme is to lead to a linear
error equation for which other identification algorithms, such as the
least-squares algorithm, are available. These algorithms are an advanta-
geous alternative to the gradient algorithm. Further, it was shown
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recently that there are advantages of the input error scheme in terms of
robustness to unmodeled dynamics (cf. Bodson [1988]).

In some cases, the input error scheme requires more computations.
This is because the observers for w), w? are on order n, instead of

n - 1 for the output error scheme. Also, the filter L' is one order
higher. When the relative degree is 1, significant simplifications arise in
the output error scheme, as discussed now.

Output Error Direct Adaptive Control—The Relative Degree 1 Case

The condition that ML be SPR is considerably stronger than the condi-
tion that ML simply be invertible (as required by the input error scheme
and guaranteed by (A2)). The relative degree of L~ ! however, is only
required to be n -~ m -1, as compared to » - m for proper invertibility.
In the case when the relative degree n — m of the niodel and of the plant

is1,L " 'is unnecessary along with the additional signal y,. The output
error direct adaptive control scheme then has a much simpler form, in
which the error equation used for identification involves the output error

€9 = Y, —Vm only. The simplicity of this scheme makes it attractive in
that case. We assume therefore the following:

(A6) Relative Degree 1 and SPR Assumptions
n-m= I,MisSPR.

Output Error Direct Adaptive Control Algorithm, Relative Degree 1—
Implementation

Assumptions
(A1)-(A3), (A6)
Data
n,k,
Input
r), y@) e R
Output
u(t) e R
Internal Signals
w(t) e R¥ [wi(r), w@(t) e R"1)
8(t) € R* [co(t), do(t) e R, ¢(t), d(t) e R~ 1]
Ym(t), eot) e R
Initial conditions are arbitrary.
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Design Parameters
Choose

o M (e kp, Bim, d,, ) satisfying (A2) and (A6).
« A e Ri-!xn-1 b e R*1in controllable canonical form
and such that det (s] —=A) = A,,(s).
o 2>0.
Controller Structure
Wl = Awh 4 bu
w® = Aw? + by,
8T = (co,cT,do,d")

T
wl = (r, wD", p,, W)

u=06"w
Identifier Structure
Ym = M(r)
€y =Yp—Vm
Gradient Algorithm
6§ = — geow
O
Comment

The identifier error equation is (3.3.24) and is the basic SPR error equa-
tion of Chapter 2. The high-frequency gain k, (and consequently ¢g) can
be assumed to be unknown, but the sign of k, must still be known to

ensure that ¢ >0, so that (1/¢ )M is SPR.

3.3.3 Indirect Adaptive Control
In the indirect adaptive control scheme presented in this section, esti-
mates of the plant parameters k,, fi,, and 3,, are obtained using the
standard equation error identifier of Chapter 2. The controller parame-
ters ¢o, ¢ and d are then computed using the relationships resulting
from the matching equality (3.2.6).

Note that the dimension of the signals w(), w® used for
identification in Chapter 2 is n, the order of the plant. For control, it is
sufficient that this dimension be n — 1. However, in order to share the

observers for identification and control, we will let their dimension bq n.
Proposition 3.2.1 is still true then, but the degrees of the polynomials
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become, respectively, oN = n, aXo =n-m, 0§ =n-m, od =n-1,
and 8¢ = n~ 1. Since dd = n -1, it can be realized as d T(s] -~ A)~'b,
without the direct gain dq from y,. This a (minor) technical difference,
and for simplicity, we will keep our previous notation. Thus, we define

67 = (¢T,dTy e R &7 = " w®") ¢ R¥ (3.3.26)
and

R

I

(co,07) e R¥*! wl = (r,wT) e R"*! (3.3.27)
The controller structure is otherwise completely identical to the con-
troller structure described previously.

The identifier parameter is now different from the controller
parameter §. We will denote, in analogy with (2.2.17)

7 = (aT,b7)
= (@, ..., AGns1,0, ..., by, ..., by) € R* (3.3.28)

Since the relative degree is assumed to be known, there is no need
to update the parameters a,, , ,—so that we let these parameters be zero

in (3.3.28). The corresponding components of W are thus not used for

identification. We let w be equal to w except for those components
which are not used and are thus set to zero, so that

wl o= i, ., Wi L0, .., w®Ty ¢ R¥ (3.3.29)

A consequence (that will be used in the stability proof in Section
3.7) is that the relative degree of the transfer function from u — w is at
least n — m.

The nominal value of the identifier parameter =* can be found
from the results of Chapter 2 through the polynomial equalities in
(2.2.5), that is

as(s)

ay +ays+ o+ am " o= kyfp(s)

b*s) = bf +bis+ - +bys"t = N(s)-dy(s)  (3.3.30)
The identifier parameter error is now denoted
¢ = 7 -7 € R¥” (3.3.31)

The transformation =-»6 1is chosen following a certainty
equivalence principle to be the same as the transformation #*— §*, as in
(3.2.7)-(3.2.9). Note that our estimate of the high-frequency gain k, is
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Qm+1. Since ¢§ = ky, / ky, we will let ¢g = kp, / @ . The control input
u will be unbounded if a,, , ; goes to zero, and to avoid this problem, we
make the following assumption.
(A7) Bound on the High-Frequency Gain

Assume k, = k yin > 0.
The practical implementation of the indirect adaptive control algorithm
is summarized hereafter.

Indirect Adaptive Control Algorithm—Implementation
Assumptions
(A1)-(A3), (A7)
Daca
n, m, k min
Input
ri), y(1) € R
Output
u(t) e R
Internal Signals
w(t) e R+ (w(z), w®(t) e R"]
8(t) e R *! [co(t) e R, c(t), d(1) e R"]
x(t) e R¥ [a(t), b(t) e R"]
Ww(t) e R™
yi(t), es(t) e R
Initial conditions are arbitrary, except a,, + 1(0) >k min-
Design Parameters
Choose
. M (e ki s A,y 3,,,) satisfying (A2).
« A e R"*" b, € IR" in controllable canonical form, such that
det (s] - A) = X(s) is Hurwitz and X(s) = N () i (5).
+ g,v>0.
Controller Structure
wh = Aw® 4 by
W = Aw@+ by,
687 = (co, ¢T,dT) = (co, Cps v s Cnsdry .o, dy)
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wl = (r, w7, W@y

u=0"w
Identifier Structure
o= @, bT)y=(a1, ..., @ne1,0,..., by, ..., by
W=, . .., wid,0,..., w®)
Vi =x'W

€3 = T - Vp

Normalized Gradient Algorithm with Projection
. e3w
=g 3T
L+ywTw
If ap 1 = kmin and @, , 1 <0, then let 4,,, ., = 0.
Transformation Identifier Parameter —» Controller Parameter
Let the polynomials with time-varying coefficients
a(s)=ay+ " + uey ™ ) =c o+ +cpst!
b(s)y=by+ - + bys"~! d(s)= d+ - +dys"!
Divide A ¢d,, by (X - 5), and let ¢ be the quotient.
6 is given by the coefficients of the polynomials

PO 1 JUR
c=\- a
Am + | 1
- 1 A~ A A A
d= (q)\—qb—)\od,,,)
Am + 1
and by
c ull
0=
Am + 1

Transformation Identifier Parameter — Controller Parameter .

We assumed that the transformation from the identifier parameter = to
the controller parameter 0 is performed instantaneously. Note that rA-b
is a2 monic polynomial, so that § is also a monic polynomial (of degree
n-m). Its cogfﬁfients can be expressed as the sum of products of
coefficients of Agd,, and X - 5. The same is true for ¢, d, and cg with
an additional division by a,,,,. Therefore, given n and m, the transfor-

mation consists of a fixed number of multiplications, additions, and a
division.
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Note also that if the coefficients of 4 and b are bounded, and if
4, ., is bounded away from zero (as is guaranteed by the projection),
then the coefficients of ¢, ¢, d , and ¢g are bounded. Therefore, the
transformation is also continuously differentiable and has bounded
derivatives.

3.3.4 Alternate Model Reference Schemes

The input error scheme is closely related to the schemes presented in
discrete time by Goodwin & Sin [1984], and in continuous time by
Goodwin & Mayne [1987]. Their identifier structure is identical to the
structure used here, but their controller structure is somewhat different.
In our notation, Goodwin & Mayne choose

A(s)
NS)L(s)
where A, X and L are polynomials of degree < n, n, and n - m, respec-
tively. The polynomials A\, L are used for similar purposes as in the
input error scheme. However, except for possible pole-zero cancella-
tions, AL now also defines the model poles in (3.3.32). The filtered
reference input

M(s) = ky (3.3.32)

r =km4910) (3.3.33)
A(s)
is used as input to the actual controller. Then, the transfer function
¥ — y, is made to match L~ ! so that the transfer function from r — Vp
is M. Thus, by prefiltering the input, the control problem of matching a
transfer function M is altered to the problem of matching the arbitrary
all-pole transfer function L~

The input error adaptive control scheme of Section 3.3.1 can be
used to achieve this new objective and is represented in Figure 3.6. This
scheme is the one obtained by Goodwin & Mayne (up to a small remain-
ing difference described hereafter). Since the new model is L ~ !, the new
transfer function M L is equal to 1. Note that, in this instance, the
input and output errors are identical and the input and output error
schemes are very similar. The analysis is also considerably simplified.

Goodwin & Mayne’s algorithms essentially control the plant by
reducing the transfer function to an all-pole transfer function of relative
degree n — m. The additional dynamics are provided by prefiltering the
reference input. Thus, the input error scheme presented in Section 3.3.1
is a more general scheme, allowing for the placement of all the closed-
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Figure 3.6: Alternate Input Error Scheme

loop poles directly at the desired locations without prefiltering.

Note that since identification and control can be separated in the
i_nput error scheme, we may identify 1/co and 8 /¢, rather than ¢, and
6. This is also shown in Figure 3.6. By dividing the identifier error e,
by ¢y, the appropriate linear error equation may be found and used for
identification.

It is curious to note that the problems encountered are different
depending whether we identify cq or 1/¢o. If we identify 1/c¢q, as we did
in the indirect scheme, the control input u = cor+6'w will be
unbounded if the estimate of 1/cg goes to zero. To avoid the zero cross-
ing, we require knowledge of the sign of 1/cq (that is, of k,), and of a
lower bound on 1/cq, that is a lower bound on k, to be used with the
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projection algorithm.

If we identify cq directly, as we did in the input error scheme, a
different problem appears. If ¢g = 0 and 6 =0, then u =0and e; =0
(cf. Figure 3.5). No adaptation will occur (¢ = 0), although Vp — Ym does
not tend necessarily to zero and may even be unbounded. This is an
identification problem, since we basically lose information in the regres-
sion vector. To avoid it, we require the knowledge of the sign of ¢ (i.e.,
of k,) and a lower bound on ¢, therefore an upper bound on k,, to be
used by the projection algorithm.

3.3.5 Adaptive Pole Placement Control
The model reference adaptive control approach requires a minimum
phase assumption on the plant P(s) This results from the necessity to

cancel the plant zeros in order to replace them by the model zeros. One
might consider the approach of letting the model be

Aip(s)
m a
dm(s)
that is, require that only the closed-loop poles be assigned. An adaptive
control based on this idea is called an adaptive pole placement control
algorithm. We now discuss some of the differences between this and the
model reference adaptive control algorithms presented above.
First note that in (3.3.34), the reference model itself becomes adap-
tive, with 7, replaced by its estimated value. Since 7, is unknown a

-~

priori and it is not Hurwitz, it is impossible to choose A = Aonm as

before. Now, let X be an arbitrary Hurwitz polynomial, and consider the
same controller as previously, so that (3.2.4) is valid. The nominal

M(s) = ie.  An(s) = f(s)  (3.3.34)

values ¢, ¢°, d* such that the closed-loop transfer function is equal to
the M (s) defined in (3.3.34) must satisfy

(XN -&%)d, - kh,d* = [ca p ]X& (3.3.39)
m
This equation is a Diophantine equation, that is a polynomial equation
of the form
g+ by = ¢ (3.3.36)

A necessary condition for a solutlon X,y to exist is that any common
zeroof @, b is also a zero of &. A sufﬁcxent condition is simply that 4, b
be coprime, in this case, n,,,a’p coprime (see lemma A6.2.3 in the



130 Adaptive Control Chapter 3

Appendix for the general solution in that case). Previously, (3.3.35) was
replaced by (3.2.6), with 71, appearing on the right hand side, so that any
common zero of 7, a7,, was automatically a zero of the right hand side.
Therefore, the solution always existed, although not unique when 7,, d,
were not coprime.

An indirect adaptive pole placement control algorithm may be
obtained in a similar way as the indirect model reference adaptive con-

trol algorithm of Section 3.3.3. Then ¢, d are obtained by solving
(3.3.35) with ky, 7, d, replaced by their estimates. A difficulty arises to

guarantee that the estimates of ﬁ,,c?p are coprime, since the solution of
(3.3.35) will usually not exist otherwise. This was not necessary in the
model reference case where the solution always existed.

Proving stability for an adaptive pole placement algorithm is some-
what complicated. It is often assumed that the input is sufficiently rich
and that some procedure guarantees coprimeness of the estimates.
Nevertheless, these algorithms have the significant advantage of not
requiring minimum phase assumptions. A further discussion is
presented in Section 6.2.2.

3.4 THE STABILITY PROBLEM IN ADAPTIVE CONTROL

Stability Definitions

Various definitions and concepts of stability have been proposed. A
classical definition for systems of the form

x = f(t,x) (3.4.1)
is the stability in the sense of Lyapunov defined in Chapter 1.
The adaptive systems described so far are of the special form

x = f(t,x,r(t)) (3.4.2)

where 7 is the input to the system and x is the overall state of the sys-
tem, including the plant, the controller, and the identifier. For practical
reasons, stability in the sense of Lyapunov is not sufficient for adaptive
systems. As we recall, this definition is a local property, guaranteeing
that the trajectories will remain arbitrarily close to the equilibrium, when
started sufficiently close. In adaptive systems, we do not have any con-
trol on how close initial conditions are to equilibrium values. A natural
stability concept is then the bounded-input bounded-state stability (BIBS).
for any r(.) bounded, and x, € IR”", the solution x(.) remains bounded.
This is the concept of stability that will be used in this chapter. ’
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The Problem of Proving Stability in Adaptive Control .
The stability of the identifiers presented in Chapter 2 was assess.eq in
theorem 2.4.5. There, the stability of the plant was assumed explicitly.
In adaptive control, the stability of the controll.ed plant must be
guaranteed by the identifier, which seriously pomphcates the problem.
The stability of the overall adaptive system, which includes the plant, the
controller, and the identifier, must then be considered.

To understand the nature of the problem, we will take a general
approach in this section and consider the generic model reference adap-
tive control system shown in Figure 3.7.

MODEL
REFERENCE

y OUTPUT
r INVERSE M Y- ERROR
-~ p 0

(D4——FP 1 MODEL o
REFERENCE ypa + °
INPUT ¢

ERROR

u PLANT

——-4%;:::::3 M/
uy P u P

OBSERVER OBSERVER
WU UV

L_n_f_.. CONTROLLER |@———— IDENTIFER | —»
8 8m T IDEERS'ER

Figure 3.7: Generic Model Reference Adaptive Control System

The signals and systems defined previously can be recognized. 6 is the
controller parameter, and = is the identifier parameter. In the case of
direct control, 6 = =, that is, the parameter being identified is directly
the controller parameter. The identifier error may be the output error
ey = Yp—Vm» the input error ¢; = r,—r, or any other error used for
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identification.

The problem of stability can be understood as follows. Intuitively,
the plant with the control loor will be stable if 8 is sufficiently close to
the true value §*. However, as we saw in Chapter 2, the convergence of

the identifier is dependent on the stability and persistent excitation of
signals originating from the control loop.

To break this circular argument, we must first express properties of
the identifier that are independent of the stability and persistency of
excitation of these signals. Such properties were already derived in
Chapter 2, and were expressed in terms of the identifier error. Recall

that the identifier parameter error = - =* does not converge to zero but
that only the identifier error converges to zero in some sense. Thus, we
cannot argue that for ¢ sufficiently large, the controller parameter 4 will
be arbitrarily close to the nominal value that stabilizes the plant-control
loop.

Instead of relying on the convergence of 6 to 6 to prove stability,
we can express the control signal as a nominal control signal—that makes
the controlled plant match the reference model—plus a control error.
The problem then is to transfer the properties of the identifier to the
control loop, that is, the identifier error to the control error, and prove
stability. Several difficulties are encountered here. First, the transfor-
mation (=) is usually nonlinear. In direct adaptive control, the transfor-
mation is the identity, and the proof is consequently simplified. Another
difficulty arises however from the different signals v and w used for
identification and control. A major step will be to transfer properties of
the identifier involving v to properties of the controller involving w.
Provided that the resulting control error is a “small” gain from plant sig-
nals, the proof of stability will basically be a small gain theorem type of
proof, a generic proof to assess the stability of nonlinear time varying
systems (cf. Desoer & Vidyasagar [1975]).

3.5 ANALYSIS OF THE MODEL REFERENCE ADAPTIVE CON-
TROL SYSTEM

We now return to the model reference adaptive control system presented
in Sections 3.1-3.3. The results derived in this section are the basis for
analyses presented in this- and following chaptess. Many identities
involve signals which are not available in practice (since Pis unknown)
but are well defined for the analysis. Most results also rely on the con-
trol input being defined by

u = 60Tw
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(CO, CT1 dOa dT)

(r, W, g, W) (3.5.1)

BT
T

w

Error Formulation ‘ '
It will be useful to represent the adaptive system in terms of its devia-

tion with respect to the ideal situation when' 6 = 8", 'that is, ¢ = 0. Tk}is
step is similar to transferring the equilibrium point of a differential

equation as (3.4.1) to x = 0 by a change of coordinates.
Recall that we defined r, in (3.3.1) as

o= M) (3.5.2)
while
Ym = M) (3.5.3)
Applying L to (3.3.10), it follows, since §* is constant, that
u = chr,+ 6w (3.5.4)
and, since u is given by (3.5.1),

- r+ L pTw (3.5.5)

I,
P
T

Further, applying M to both sides of (3.5.5)

Yo = Im+ = M(GTW) (3.5.6)
Co
The signal ¢ 7w will be called the control error. We note that the
input error e; = r,—r is directly proportional to the control error ¢Tw
(cf. (3.5.5)), while the output error ey = y, — Vm 18 related to the control
error through the model transfer function M (cf. (3.5.6)).

Since y, = P (u) = M (rp), the control input can also be expressed in
terms of the control error as

w = PTG, = PTG+ 9Tw) (3.5.7)
! .

and the vector w is similarly expressed as
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Wi (ST -A)"'ByP~'M |

W o= y(, = M (r+—o¢Tw)  (3.5.8)
ey (I -A)'BM o

while v (cf. (3.3.16)) is given by
[ 1

L | GI=-A)'5P M
y = L-! )M* (r+-{—¢TW) (3.5.9)
(I = A)~ ‘b M ¢o

For the purpose of the analysis, we also define (cf. (3.3.10))

1
(I -A)"'bP M
M -~
(sI -A)" ‘oM
Note that the transfer functions appearing in (3.5.6)-(3.5.10) are all
stable (using assumptions (A1)-(A2) and the definitions of A and L, - b,

z = L) = - (r+—IT¢Tw) (3.5.10)

Co

<

Model Signals
The model signals are defined as the signals corresponding to the plant
signals when 6 = 6%, that is, ¢ = 0. As expected, the model signals

corresponqing to y, and r, are y, and r, respectively (cf. (3.5.6) and
(3.5.5)). Similarly, we define

B wih (sT -A)"'ByP ™' M
Wi 2= | Vm = M R (r)
wd (sI -A)"'bM
= B () (3.5.11)
and
R
. s | 1 -a) 8B
i = L7ay) o= L[ TR BETM s 1)
(sI —A) " 'by M
By defining
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Wy 1= (3.5.13)

W = Zm (3.5.14)

Since the transfer functions relating r to the model signals are all
stable, and since r is bounded (assumption (A3)), it follows that all
model signals are bounded functions of time. Consequently, if the
differences between plant and model signals are bounded, the plant sig-
nals will be bounded.

State-Space Description
We now show how a state-space description of the overall adaptive sys-
tem can be obtained. In particular, we will check that no cancellation of

possibly unstable modes occurs when 8 = 6°.

The plant has a minimal state-space representation [4,, b,,,c,,T ] such
that
Ap(s)

(5)

With the definitions of w®), w® in (3.2.17)=(3.2.19), the plant with
observer is described by

P(s) = k

= ¢l (sI-4,)"'b, (3.5.15)

Apxp+byu

Xp

wh

AwD + bu
w® = Aw® + by, = Aw? + belx,  (3.5.16)

The control input # can be expressed in terms of its desired value,
plus the control error ¢ 7w, as

u = 8Tw = 0"w+ o w (3.5.17)
so that
%, Ay +bydicl  byeT bpdT X,
w | = bdgc  A+beT badT | [ wh
W@ ) W@

b)\cg‘ 0 A
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y, = clx, (3.5.18)

Defining x,, € IR* 2 to be the total state of the plant and observer, this
equation is rewritten as

Xpw = AmXpy + bpdTw + by cr

Vo = CoXpw (3.5.19)
where 4,, € R3»-2x3-2 p ¢ R¥*-2 and ¢,, € IR¥-? are defined
through (3.5.18). Since the transfer function from r—y, is M when
¢ = 0, we must have that ¢ (s/ - A,,) "' by, = (1/¢8) M(s), that is, that
(A, b ch] is a representation of the model transfer function M,

divided by ¢j. Therefore, we can also represent the model and its out-
put by
AmXm + by r

X
Ym = CoXm (3.5.20)

Note that although the transfer function M is stable, its representa-
tion is non-minimal, since the order of M is n, while the dimension of
A, is 3n-2. We can find where the additional modes are located by
noting that the representation of the model is that of Figure 3.8. Using
standard transfer function manipulations, but avoiding cancellations, we
get

>

~
&
- |

|~~~
>
m?‘N i
N oy
=
A >/>\-/ y)

fs

ch (sl —Apy) ' by

—
1

>

V)Ia;’

~~
>
I
)
-
=

>
<3
>
3

R

>

ﬁa.o <

i

R
\5’
Q>
-

= (3.5.21)
A =-¢%)
and, using the matching equality (3.2.6)
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*

r Co
_____,O_.@% > kp
A

O->| 3>
o ©

ch (sl = Ap)” by M (3.5.22)

It
|
x—
3
'
>
>

Ca dm )‘)‘Oﬁp C(‘)

Thus, the additional modes are those of X, Xo, and 7,, which are all
stable by choice of X, Xo, and by assumption (A1). In other words, 4,,
is a stable matrix.

Since r is assumed to be bounded and 4,, is stable, the state vector
trajectory x,, is bounded. We can represent the plant states as their
differences from the model states, letting the state error

= Xpy — X € R¥ 72 50 that
¢ = Ape + by Tw

€0 = Vp—Vm = Che (3.5.23)

and
€ = Y-y = —M@Tw) = M(LoTw)  (3.524)
Co Co

which is equation (3.5.6), (derived above) through a somewhat shorter
path.

Note that (3.5.23) is not a linear differential equation representing
the plant with controller, because w depends on e. This can be resolved
by expressing the dependence of w on e as

w = w, + Qe (3.5.25)

where
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0 00
0 070
I
001
IRlxn IRlxn—l IRlxn-l
IRn—lxn IRn—lxn—l Rn—lxn—l
€ R!xn R!*xn-1 RIxn-1 = R¥x3n-2 (3.5.26)

IRn—lxn IRn—lxn-l an-lxn-l
A differential equation representing the plant with controller is then

é = Ape + by w, + bpo Qe

o
ey = cme (3.5.27)
where w,, is an exogeneous, bounded input.
Complete Description—Qutput Error, Relative Degree 1 Case
To describe the adaptive system completely, one must simply add
to this set of differential equations the set corresponding to the identifier.
For example, in the case of the output error adaptive control scheme for

relative degree 1 plants, the overall adaptive system (including the plant,
controller and identifier) is described by

e = Ape + bypd wy, + byoT Qe

¢ = —gchew, - gcheQe (3.5.28)

As for most adaptive control schemes presented in this book, the adap-
tive control scheme is described by a nonlinear, time varying, ordinary
differential equation. This specific case (3.5.28) will be used in subse-
quent chapters as a convenient example.

3.6 USEFUL LEMMAS

The following lemmas are useful to prove the stability of adaptive con-
Frol schemes. Most lemmas are inspired from lemmas that are present
in one form or another in existing stability proofs. In contrast with Sas-
try [1984] and Narendra, Annaswamy, & Singh [1985], we do not use
any ordering of signals (order relations o(.) and O(.)), but keep relation-
ships between signals in terms of norm inequalities.

The systems considered in this section are of the general form

y = H(u) (3.6.1)
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where H : Ly, — Ly, is a SISO causal operator, that is, such that
= (H(u)) (3.6.2)

for all u € Ly, and for all £ = 0. Lemmas 3.6.1-3.6.5 further restrict
the attention to LTI systems with proper transfer functions H (s).

Lemma 3.6.1 is a standard result in linear system theory and relates
the L, norm of the output to the L, norm of the input.

Lemma 3.6.1 Input/Output Lp Stability

Lety = bif (u), where Hisa proper, rational transfer function. Let & be
the impulse response corresponding to H.

If H is stable

Then forallp € [l,00]andforallu € L,

Kyl < WAl ullp + Il el (3.6.3)

forall u € Looe
Ly < 1Al ullg + 1e)] (3.6.4)

for all ¢ = 0, where €(¢) is an exponentially decaying term due
to the initial conditions.
Proof of Lemma 3.6.1 cf. Desoer & Vidyasagar [1975], p. 241.

It is useful, although not standard, to obtain a result that is the con-
verse of lemma 3.6.1, that is, with ¥ and y interchanged in (3.6.3)-
(3.6.4). Such a lemma can be found in Narendra, Lin, & Valavani
[1980], Narendra [1984], Sastry [1984], Narendra, Annaswamy, & Singh
[1985], for p = co. Lemma 3.6.2 is a version that is valid for
p € [1,00], with a completely different proof (see the Appendix).

Note that if H is minimum phase and has relative degree zero,
then it has a proper and stable inverse, and the converse result is true by
lemma 3.6.1. If H is minimum phase, but has relative degree greater
than zero, then the converse result will be true provided that additional

conditions are placed on the input signal . This is the result of lemma
3.6.2.

Lemma 3.6.2 Output/Input Lp Stability
Let y = H(u), where His a proper, rational transfer function. Let
e {1,00}
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If H is minimum phase
For some ky, k; 2 0, forall u, 1 € L,, and forall ¢t 2 0

i, = kil wellp + k2 (3.6.5)

Then  there exist a;,a; = 0 such that

” Uy ”p =< al” Wi “p + a; (3-6-6)
forallt =2 0.
Proof of Lemma 3.6.2 in Appendix.

It is also interesting to note the following equivalence, related to
L, norms. Foralla,b € L.

laO] Skl bllg+ka iff llally, < kil bl + k2 (3.6.7)

The same is true if the right-hand side of the inequalities is replaced by
any positive, monotonically increasing function of time. Therefore, for
D = 0o, the assumption (3.6.5) of lemma 3.6.2 is that u is regular (cf.
definition in (2.4.14)). In particular, lemma 3.6.2 shows that if u is reg-

ular and y is bounded, then u is bounded. Lemma 3.6.2 therefore leads
to the following corollary.

Corollary 3.6.3 Properties of Regular Signals

Lety = H (u), where Hisa proper, rational transfer function. Let H be
stable and minimum phase and y € Lo0
(a) If  u is regular

Then {u(t)| < all yill,+a, forallz=0.

(b) If  uis bounded and His strictly proper

Then y is regular,
(c) If  uisregular

Then y is regular.
The properties are also valid if ¥ and y are vectors such that each com-
ponent y; of y is related to the corresponding u; through y; = H ().
Proof of Corollary 3.6.3 in Appendix.

In Chapter 2, a key property of the identification algorithms was
obtained in terms of a gain be¢longing to L,. Lemma 3.6.4 is useful for
such gains appearing in connection with systems with rational transfer
function H.

e’
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Lemma 3.6.4
Lety = H (u), where H is a proper, rational transfer function.
If H is stable, u € L e and for some x e L __,
lu@) < Bl xll, + Balt) (3.6.8)

for all ¢ = 0 and for some 8,82 € L
Then  there exist v;,v2 € L such that, forallz =0

1y < 1Ol Xl + 72 | (3.6.9)

If in addition, either H is strictly proper,
or 81,8, € Loo and B,(2),8:(t) = Qast - 0O

Then ~y,v2 € L and v,(t),v2(t) > 0ast - oo
Proof of Lemma 3.6.4 in Appendix.

The following lemma is the so-called swapping' lemmq (Morse
[1980]), and is essential to the stability proofs presented in Section 3.7.

Lemma 3.6.5 Swapping Lemma

Let ¢,w: R, - R"” and ¢ be differentiable. Let H be a proper,
rational transfer function.

If H is stable, with a minimal realization
H = cT(sI-4)"'b +d (3.6.10)
Then
AWT¢)-Hw e = H.(H,(w")$) (3.6.11)
where

Hy, = (sI-4)"'b A = -cTel-4)"" (612

Proof of Lemma 3.6.5 in Appendix.

Lemma 3.6.6 is the so-called small gain theorem (Desoer &
Vidyasagar [1975]) and concerns general nonlinear time-varying systems
connected as shown in Figure 3.9.

Roughly speaking, the small gain theorem states that the system of
Figure 3.9, with inputs u;,u; and outputs y;,y2, is BIBO stable, pro-
vided that H, and H, are BIBO stable and provided that the product of
the gains of H; and H} is less than 1.
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Figure 3.9: Feedback System for the Small-Gain Theorem

Lemma 3.6.6 Small Gain Theorem

Consider the system shown in Figure 3.9. Let pe{l,on]. Let H,,
H,: Ly, - L, be causal operators. Let e, e; € L,, and define u, u, by

uy = e+ Hy(ey)
u = e - Hy(ey) (3.6.13)
Suppose that there exist constants 8, 8; and v, v; = 0, such that
Il Hiedl < vill e |l + 8y

| Ha(e) ]l = vall ea |l + 82 forallt =0 (3.6.14)
If Y1 y2<|
Then
el < (L=yiv) ' (L ug, lt + vall ua, || + B2 + ¥2B1)
leyll < (L=viv) ™ (ll ug Il + vill uy, || + 81 + vi82) (3.6.15)
for all 1 = 0.
If in addition, u;, uy e L,

Then e, ey, i = Hi(ey), y1 = Hyez) € L, and (3.6.15) is valid with
all subscripts ¢ dropped.

Proof of Lemma 3.6.6 cf. Desoer & Vidyasagar [1975], p. 41.
3.7 STABILITY PROOFS

3.7.1 Stability—Input Error Direct Adaptive Control
T}le following theorem is the main stability theorem for the input error
direct adaptive control scheme. It shows that, given any initial condi-

tion gnd any bounded inp'u.t r(¢), the states of the adaptive system
remain bounded (BIBS stability) and the output error tends to zero, as
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{ - oo . Further, the error is bounded by an L, function.

We also obtain that the difference between the regressor vector v
and the corresponding model vector v,, tends to zero as  — Qo and is in
L,. This result will be useful to prove exponential convergence in Sec-
tion 3.8.

We insist that initial conditions must be in some small By, because
although the properties are valid for any initial conditions, the conver-
gence of the error to zero and the L, bounds are not uniform globally.
For example, there does not exist a fixed L, function that bounds the
output error no matter how large the initial conditions are.

Theorem 3.7.1
Consider the input error direct adaptive control scheme described in
Section 3.3.1, with initial conditions in an arbitrary Bj.

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error g = ¥, —Vm € L2 and tends to zero as { — 00;
the regressor error v — v, € Lj and tends to zero as { = QO .

Comments

The proof of the theorem is organized to highlight the main steps that
we described in Section 3.4.

Although the theorem concerns the adaptive scheme with the gra-
dient algorithm, examination of the proof shows that it only requires the
standard identifier properties resulting from theorems 2.4.1-2.4.4.
Therefore, theorem 3.7.1 is also valid if the normalized gradient algo-
rithm is replaced by the normalized least-squares (LS) algorithm with
covariance resetting.

Proof of Theorem 3.7.1

(a) Derive properties of the identifier that are independent of the bounded-
ness of the regressor—Existence of the solutions.

Properties obtained in theorems 2.4.1-2.4.4 led to
167yl =8l vl B0 |
BeL,NL_,
¢ e L, ¢ e LNl
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co(t) 2 Ccpin>0 foraillt =0 3.7.1)

The inequality for cq(z) follows from the use of the projection in the
update law,

The question of the existence of the solutions of the differential
equations describing the adaptive system may be answered as follows.
The proof of (3.7.1) indicates that ¢ € L oo 35 long as the solutions exist.
In fact, | ¢ (¢)] <| ¢(0)|, so that |6(¢)] <8 + |¢(0) for all z=0.
Therefore, the controlled system is a linear time invariant system with a
linear time varying controller and bounded feedback gains. From propo-
sition 1.4.1, it follows that all signals in the feedback loop, and therefore
in the whole adaptive system, belong to L e’

(b) Express the system states a1.d inputs in term of the control error.

This was done in Section 3.5 and led to the control error ¢ w, with

r, = r+ - oTw
2

u = P 'M(r,)

~ 1 ~
Vp = M(rp) = ym+ — M@@"w)

€o

(ST -A)"'byP ' M )

W o= M (r) = Hy ,(rp)

(sI-A)"'bM

fl

_ A 1

W+ me,( - ¢Tw) 3.7.2)
Co

where the transfer functions M and I-?W . are stable and strictly proper.

(c) Relate the identifier error to the control error.
The properties of the identifier are stated in terms of the error

¢#Tv = ¢T L ~!(z), while the control error is ¢”w. The relationship
between the two can be examined in two steps.

(c1) Relate ¢Tw to ¢7z
Only the first component of w, namely r, is different from the first com-
ponent of z, namely, r,. The two can be related using (3.5.4), that is

u = chr, + g w (3.7.3)

and using the fact that the control input
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u = cor+07w (3.7.4)
to obtain
o= Lcor+dTw) = r+ L gTw (3.7.5)
¢ o
and
- Lgr,-eTw) = -7z 3.7.6
"CO(COv’pd’W) 7 Cod)z (3.7.6)
It follows that
Lgrw = Lgr; (3.7.7)
ch . ©Co

(c2) Relate ¢z to ¢7v = ¢7 L "' (z)
This relationship is obtained through the swapping lemma (lemma
3.6.5). We have, with notation borrowed from the lemma

LY Loy = Lo P79 @Dy (3.7.8)
Co Co Co

and, using (3.7.7) with (3.7.8)

Lt @) = MLE N o™w) = MLE (- 07)

c) Co

]

LG5 ¢™) + MELNES E(E)  (79)

With (3.7.2), this equation leads to Figure 3.10. It represents the

plant as the model transfer function with the control error ¢Tw in feed-
back. The control error has now been expressed as a function of the

identifier error ¢7v using (3.7.9).

The gain ¢7 operating on v is equal to the gain 8 operating on
| vill > and this gain belongs to L. On the other hand, ¢ € L,, so
that any of its component is in L,. In particular ¢y € L,. Also,
co(t) Z Cmin, 50 that 1/co € L . Thus, d/dt(¢/co) € L. Therefore,
in Figure 3.10, the controlled plant appears as a stable transfer function
M with an L, feedback gain.

(d) Establish the regularity of the signals.

The need to establish the regularity of the signals can be understood
from the following. We are not only concerned with the boundedness of
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Figure 3.10: Representation of the Plant for the Stability Analysis

the output y, but also of all the other signals present in the adaptive sys-
tem. By ensuring the regularity of the signals in the loop, we guarantee,
using lemma 3.6.2, that boundedness of one signal implies boundedness
of all the others.

Now, note that since ¢ e Loo, the controller parameter 6 is also
bounded. It follows, from proposition 1.4.1, that all signals belong to
L

e’

Recall from (3.7.5) that

Co 1
= — ) 4 —

oS o

r oTWw (3.7.10)

Note that cg and r are bounded, by the results of (a) and by assumption
(A3). w is related to r, through a strictly proper, stable transfer function
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(cf. (3.7.2)). Therefore, with (3.7.10) and lemma 3.6.1
1% < k(6T W)l + K
d — -7
|2 W S k@)l + & (3.7.11)

for some constant k =0. To prevent proliferation of constants, we will
hereafter use the single symbol k, whenever such an mequahty is valid
for some positive constant.

Since ¢ is bounded, the last inequality implies that
d _
| = p wl < k| wll, +k (3.7.12)

that is, that w is regular.
Similarly, since ¢ and ¢ are bounded and using (3.7.1 1)

l( ¢ ywl+le’ ( ;W

A

d -7
l'g;(tb w)|

IA

ki @7 )llg + K (3.7.13)

so that ¢ 7 w is also regular.
The output y, is given by (using (3.7.10))

Yo = M@y = - Mieo+ = M@GTH)  (3.7.14)
Co Co

where M (cor) is bounded. Using lemma 3.6.2, with the fact that T W is
regular and then (3.7.14)

167w < k| (M@T#))l, +k
Kl Vo ll g + kIl M (cor))ll o + &

Kl ypll oo *+ k (3.7.15)
hence, with (3.7.10) and (3.7.11)

IA

A

1ol < k@7 ®)ll o+ k S kllypllg+k
%] < Kkl ypll, + K (3.7.16)

Inequalities in (3.7.16) show that the boundedness of y, implies the

boundedness of 7,,Ww,u, ..., and therefore of all the states of the adap-
tive system.
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It also follows that v is regular, since it is the sum of two regular
signals, specifically

[ 7 -1
y = i'l(z) = L» 7
L 'w
- C - -
L2y L"—‘:¢TW
= “ |+ €0 (3.7.17)
-0 L-'w

where the first term is the output of L (a stable and strictly proper,
minimum phase LTI system) with bounded input, while the second term

is the output of L 'witha regular input (cf. corollary 3.6.3).

(e) Stability proof. l . l .
Since v is regular, t epfeln 2.4.6 shows that §—>0 as ¢t —oo. From

(3.7.2) and (3.7.9)

1 -
Y + = M (¢7w)
€

Yo

Y +Mf,(—c% ¢Tv)+Mﬁic“(ib"(zT)(—é%)) (3.7.18)

We will now use the single symbol 8 in inequalities satisfied for some
function satisfying the same conditions aslg thatis 8 € L,NL_ and

B(t)—>0,as t—>00 .
The transfer functions M f,, ib“l and ic" ! are all stable and the

last two are strictly proper. The gain —cl— is bounded by (3.7.2), because

0
of the projection in the update law. Therefore, using results obtained so
far and lemmas 3.6.1 and 3.6.4

1Vp=Vml < Bllvilly + Bll 2l + 8
S Bl llgy + Bl Wil + 8
Bl Yol + 8
S Bl Op-Ymhll + 8 (3.7.19)

Recall that since § e L oo &l signals in the adaptive system belong
to L_ .. On the other hand, for T sufficiently large, st 2T) <.

e

I\
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Therefore, application of the small gain theorem (lemma 3.6.6) with
(3.7.19) shows that y,-y, is bounded for ¢+ =T7. But since ¥y,
Ym € L e it follows that y, € L oo Consequently, all signals belong

toL .
From (3.7.19), it also follows that ey = ¥, — ¥ € L3, and tends to
zero as ¢ — oo. Similarly, using (3.5.9), (3.5.12) and (3.7.9)
l -~ -~
~ (sI-A)"'bP'M
V=V, + 1%, )
(I -A)"'oyM

(LoTy+ L1 @D () (3.7.20)
Co Co

so that v - v,, also belongs to L, and tends to zero, as { = o .
3.7.2 Stability—Output Error Direct Adaptive Control

Theorem 3.7.2
Consider the output error direct adaptive control scheme described in
Section 3.3.2, with initial conditions in an arbitrary B,.

Then

(a) all states of the adaptive system are bounded functions of time.

(b) the output error €9 = ¥, -~ Ym € L3 and tends to zero as { - 0o
the regressor error L “Yw)-L-~ Y(w,,) € L, and tends to zero
ast-—>00 .

Procf of Theorem 3.7.2

The proof is very similar to the proof for the input error scheme, and is
just sketched here, following the steps of the proof of theorem 3.7.1.

(a) We now have, instead
e, e Ly
e, e L (3.7.21)

Note that these results are valid, although the realization of M is not
minimal (but is stable). '



150 Adaptive Control Chapter 3

(b) As in theorem 3.7.1.

(¢) Since ¢g = ¢g, (3.7.9) becomes

- LME@TVY s LHLES L @) (37.22)
€o 4]
(d) Asin theorem 3.7.1, it follows that w is regular—cf. (3.7.12). Unfor-

tunately, ¢~ w is not necessarily regular because ¢ is not bounded.
However, we will show that (3.7.16) still holds, which is all we will need
for the stability proof.

To prove (3.7.16), first note that lemma 3.6.2 may be modified as
follows.

If there exists z € L, k3 = 0 such that (3.6.5) is replaced by

Nadl, < ki Nudly + k2 + ksllzi]l, (3.7.23)
then lemma 3.6.2 is valid with (3.6.6) replaced by

ludly = ay i, + ax + asflz ), (3.7.24)

for some a3 > 0. We leave it to the reader to verify this new version of
the lemma.

Now, recall that

_ w» (F = )7 by (w)
w = y(, = Yp (3.7.25)
w@ (I - A by (vp)
so that
W@l < K llyyll + & (3.7.26)
To apply the modified lemma 3.6.2, we note from (3.7.25) that
w® = P(w) (3.7.27)

where P is minimum phase. Further
W = AW+ bou = AwD + boegr+ 507w (3.7.28)
It follows that

M < kWMl + & + k(WP + pll ) (3.7.29)
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and, applying the modified lemma 3.6.2
IwPlly = k w2l + k Wyl + & (3.7.30)
Putting (3.7.30) with (3.7.25)-(3.7.26)
1Fdloe = WPl + Vol + 1% 2l

<kl + K : (3.7.31)

which is equivalent to (3.7.16) (cf. (3.6.7)).

(e) Recall, from (3.3.16) and the definition of the gradient update law,
that

L ME@GTv) = e+ L MLEG e
€5 o

e, - ML v) (3.7.32)
&ch

so that, with (3.7.22)

ML@TV)+ - MG L FT))8))

Yo=VYm =
€o

o

P 1 -~ A a ~ - -

er-—ML@$7¥)+ —ML(L"(Ly'(®")$) (3.7.33)
8Co €o

Recall that e; is bounded (part (a)) and that ML is strictly proper (in

the output error scheme). The proof can then be completed as in

theorem 3.7.1. O

"

3.7.3 Stability—Indirect Adaptive Control

Theorem 3.7.3

Consider the indirect adaptive control scheme described in Section
3.3.3, with initial conditions in an arbitrary B, .

Then
(a) all states of the adaptive system are bounded functions of time.
(b) the output error ¢y = y, - y,, € L,, and tends to zero as { - 0o

the regressor error w ~w,, € L,, and tends to zero as { - oo .
Proof of Theorem 3.7.3 in Appendix. .
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Comments
Compared with previous proofs, the proof of theorem 3.7.3 presents
additional complexities due to the transformation v — 8. A major step is
to relate the identification error ¢7 W to the control error 7 w. We now
discuss the basic ideas of the proof. The exact formulation is left to the
Appendix.

To understand the approach of the proof, assume that the parame-
ters = and ¢ are fixed in time and that k, is known. For simplicity, let
k, = @m+1 = kyy = 1. The nominal values of the identifier parameters
are then given by

&N

A%

a =
~ -
b* = X -4,

The controller parameters are given as a function of the identifier
parameters through

P

>

-

¢ = \-ga
d = gx-gb - XNod, (3.7.34)
while the nominal values are given by
& = X-§"a" = X -4,
d* = @g'N-§"b* - Xodw = §°d, - Nody, (3.7.35)
It follows that
ga - ga* = N-08) -G, = ~(¢ -+ (A -8 - dA,
= -C-+@ -dn, (3.7.36)
and
gh - Gb* = G\ —d - Nodp - G\ + dd,
= —(d-d)+(-d" - Xodp + dd,)
= -d-dY+@-3"d, (3.7.37)
Therefore
glézda, bt ﬁl - - [5 &, dod B | g
x x4, ) x4,

This equality of polynomial ratios can be interpreted as an operator
equality in the Laplace transform domain, since we assumed that the
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parameters were fixed in time. If we apply the operator equality to the
input u, it leads to (with the definitions of Section 3.3)

qw™w) = -¢"w (3.7.39)
and, consequently

L oors
Vo=¥m = —— MG w) (3.7.40)
o .

Since the degree of § is at most equal to the relative degree of the
plant, the transfer function Mg is proper and stable. The techniques
used in the proof of theorem 3.7.1 and the properties of the identifier
would then lead to a stability proof.

Two difficulties ‘arise when using this approach to prove the stabil-
ity of the indirect adaptive system. The first is related to the unknown
high-frequency gain, but only requires more complex manipulations.
The real difficulty comes from the fact that the polynomials §, 4, b, ¢,
and d vary as functions of time. Equation (3.7.38) is still valid as a
polynomial equality, but transforming it to an operator equality leading
to (3.7.40) requires some care.

To make sense of time varying polynomials as operators in the
Laplace transform domain, we define

r
1
R}
5, = | (3.7.41)
sn—l
so that
a(s) = a’3, ais) aT[s—j'] (3.7.42)
A(s) A

Consider the following equality of polynomial ratios
- ats) _ b)
X))  X(@s)

where 4 and b vary with time but X is a constant polynomial. Equality
(3.7.43) implies the following operator equality

(3.7.43)
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a” [if—(-)] = b7 ls—f(.)l (3.7.44)
A A
Similarly, consider the product
i) . b (3.7.45)
NOBERYO)

This can be interpreted as an operator by multiplying the coefficients of
the polynomials to lead to a ratio of higher order polynomials and then
interpreting it as previously. We note that the product of polynomials
can be expressed as

as)b(s) = a’G.50)b (3.7.46)
so that the operator corresponding to (3.7.45) is

a aT
at |2 EXL(') b (3.7.47)

~

A

i.e. by first operating the matrix transfer function on the argument and
then multiplying by ¢ and b in the time domain. Note that this opera-
tor is different from the operator

T
— ()b (3.7.48)
A
but the two operators can be related using the swapping lemma (lemma

3.6.5).

Sp | §
al | —

P

3.8 EXPONENTIAL PARAMETER CONVERGENCE

Exponential convergence of the identification algorithms under per-
sistency of excitation conditions was established in Sections 2.5 and 2.6.
Consider now the input error direct adaptive control scheme of Section
3.3.1. Using theorem 2.5.3, it would be straightforward to show that the
parameters of the adaptive sysiem converge exponentially to their nomi-
nal values, provided that the regressor v is persistently exciting. How-
ever, such result is useless, since the signal v is generated inside the
adaptive system and is unknown a priori. Theorem 3.8.1 shows that it is
sufficient for the model signal w,, to be persistently exciting to guarantee
exponential convergence.

Note that in the case of adaptive control, we are not only interested
in the convergence of the parameter error to zero, but also in the conver-
gence of the errors between plant states and model states. In other
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words, we are concerned with the exponential stability of the overall
adaptive system,

Theorem 3.8.1

Consider the input error direct adaptive control scheme of Section 3.3.1.
If W, is PE

Then  the adaptive system is exponentially stable in any closed ball.

Proof of Theorem 3.8.1 : ?

Since w,,, W, are bounded, lemma 2.6/ implies that v,, = L Yz
=L~ '(W,,) is PE. In theorem 3.7.1, we found that v -v,, € L,. There-
fore, using lemma 2.6/, v,, PE implies that v is PE. Finally, since v is
PE, by theorem 2.5.3, the parameter error ¢ converges exponentially to
Zero.

Recall that in Section 3.5, it was established that the errors between
the plant and the model signals are the outputs of stable transfer func-
tions with input ¢”w. Since w is bounded (by theorem 3.7.1), 7w con-
verges exponentially to zero. Therefore, all errors between plant and
model signals converge to zero exponentially fast,. [J

Comments

Although theorem 3.8.1 establishes exponential stability in any closed
ball, it does not prove global exponential stability. This is because
vV =V, is not bounded by a unique L, function for any initial condition.
Results in Section 4.5 will actually show that the adaptive control system
is not globally exponentially stable.

The various theorems and lemmas used to prove theorem 3.8.1 can
be used to obtain estimates of the convergence rates of the parameter
error. It is, however, doubtful that these estimates would be of any prac-
tical use, due to their complexity and to their conservatism. A more
successful approach is that of Chapter 4, using averaging techniques.

The result of theorem 3.8.1 has direct parallels for the other adap-
tive control algorithms presented in Section 3.3.

Theorem 3.8.2

Consider the output error direct adaptive control scheme of Section
3.3.2 (or the indirect scheme of Section 3.3.3).

If Wn is PE (W, is PE)
Then  the adaptive system is exponentially stable in any closed ball.

4
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Proof of Theorem 3.8.2

The proof of theorem 3.8.2 is completely analogous to the proof of
theorem 3.8.1 and is omitted here, O

3.9 CONCLUSIONS

In this chapter, we derived three model reference adaptive control
schemes. All had a similar controller structure but different
identification structures. The first two schemes were direct adaptive
control schemes, where the parameters updated by the identifier were the
same as those used by the controller. The third scheme was an indirect
scheme, where the parameters updated by the identifier were the same as
those of the basic identifier of Chapter 2. Then, the controller parame-
ters were obtained from the identifier parameters through a nonlinear
transformation resulting from the model refezence control objective.

We investigated the connections between the adaptive control
schemes and also with other known schemes. The difficulties related to
the unknown high-frequency gain were also discussed. The stability of
the model reference adaptive control schemes was proved, together with
the result that the error between the plant and the reference model con-
verged to zero as ¢ approached infinity. We used a unified framework
and an identical step-by-step procedure for all three schemes. We
proved basic lemmas that are fi ndamental to the stability proofs and we
emphasized a basic intuitive idea of the proof of stability, that was the
existence of a small loop gain appearing in the adaptive system.

The exponential parameter convergence was established, with the
additional assumption of the persistency of excitation of a model regres-
sor vector. This condition was to be satisfied by an exogeneous model
signal, influenced by the designer and was basically a condition on the
reference input.

An interesting conclusion is that the stability and convergence pro-
perties are identical for all three adaptive control schemes. In particular,
the indirect scheme had the same stability properties as the direct
schemes. Further, the normalized gradient identification algorithm can
be replaced by the least squares algorithm with projection without alter-
ing the results. Differences appear between the schemes however, in
connection with the high-frequency gain and with other practical con-
siderations.

The input error direct adaptive control scheme and the indirect
scheme are attractive because they lead to linear error equations and do
not involve SPR conditions. Another advantage is that they allow for a
decoupling of identification and control useful in practice. The indirect
scheme is quite more intuitive than the input error direct scheme,
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although more complex in implementation and especially as far as th_e
analysis is concerned. The final result however shows that stability is
not an argument to prefer one over the other.

The various model reference adaptive control scherne§ also shqwed
that the model reference approach is not bound to the choice of a direct
adaptive control scheme, to the use of the output error in the
identification algorithm, or to SPR conditions on the reference model.



