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the convergence rates, even in the nonlinear adaptive control case
These resu_lts‘are useful for the optimum design of reference input The);
have thp hr_mtation of depending on unknown plant parameters 'but an
approximation of the complete parameter trajectory is obtained ’and the
updcrstan;img of the dynamical behavior of the parameter error is con-
s1d§rably increased using averaging. For example, it was found that the
trajectory of the parameter error corresponding to the linear error equa-
tion could ‘be approximated by an LTI system with real negative eigen-
valugs, while for the strictly positive real (SPR) error equation it had
possibly complex eigenvalues.

'BCSldCS requiring stationarity of input signals, averaging also
rg:qulrec} slow parameter adaptation. We showed however, through
simulations, that the approximation by the averaged system wa; good for
yaluc?s of the adaptation gain that were close to 1 (that is, not necessarily
19ﬁmtesxmal) and for acceptable time constants in the p’arameter varia-
tions. In fact, it appeared that a basic condition is simply that parame-

ters vary more slowly than do other states and si i
Ny d signals of the adaptive

CHAPTER 3
ROBUSTNESS

5.1 STRUCTURED AND UNSTRUCTURED UNCERTAINTY

In a large number of control system design problems, the designer does
not have a detailed state-space model of the plant to be controlled, either
because it is too complex, or because its dynamics are not completely
understood. Even if a detailed high-order model of the plant is avail-
able, it is usually desirable to obtain a reduced order controller, so that
part of the plant dynamics must be neglected. We begin discussing the
representation of such uncertainties in plant models, in a framework
similar to Doyle & Stein [1981].

Consider the kind of prior information available to control a stable
plant, and obtained for example by performing input-output experi-
ments, such as sinusoidal inputs. Typically, Bode diagrams of the form
shown in Figures 5.1 and 5.2 are obtained. An inspection of the
diagrams shows that the data obtained beyond a certain frequency wy is
unreliable because the measurements aré poor, corrupted by noise, and
so on. They may also correspond to the high-order dynamics that one
wishes to neglect. What is available, then, is essentially no phase infor-
mation, and only an “envelope” of the magnitude response beyond wy.
The dashed lines in the magnitude and phase response correspond to the
approximation of the plant by a finite order model, assuming that there
are no dynamics at frequencies beyond wy. For frequencies below wy, it
is easy to guess the presence of a zero near w;, poles in the neighborhood
of wy, w3, and complex pole pairs in the neighborhood of ws, ws.

209
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Figure 5.1: B.de Plot of the Plant (Gain)
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Figure 5.2: Bode Plot of the Plant (Phase)

To keep the design goal specific and consistent with our previous
ana}ysis, we will assume that the designer’s goal is model following: the
designer is furnished with a desired closed-loop response and selects an
appropriate reference model with transfer function M (s). The problem
is to design a control system to get the plant output y,(¢) to track the

Section 5.1 Structured and Unstructured Uncertainty 211

model output y,(f) in response to reference signals r(t) driving the
model. This is shown in Figure 5.3.
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Figure 5.3: Model Following Control System

The controller generates the input u(¢) of the plant, using Ym(t), ¥p(t)
and r(t) so that the error between the plant and model output
eot) 1= yp(t) - ym(t) tends to zero asymptotically.

Two options are available to the designer at this point.
Non-Adaptive Robust Control. The designer uses as model for the plant

the nominal transfer function £*(s)

Ps) = |
s o) (5.1.1)

(5 +wp) (5 + w3)((s +va)? + (@) )((s +5)* + (5)*)

The gain k, in (5.1.1) is obtained from the nominal high-frequency
asymptote of Figure 5.1 (i.e. the dashed line). The modeling errors due
to inaccuracies in the pole-zero locations, and to poor data at high fre-
quencies may be taken into account by assuming that the actual plant
transfer function is of the form

_B(s) = P(s) + Hys) (5.1.2)
or
B(s) = P*(s) (1 +Hpnls)) (5.1.3)

where I-?a(s) is referred to as the additive uncertainty and fIm(s) as the
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multiplicative ungertainty. Of course, ll?a(jw)l and ]I:I,"(jw)| are unk-
nown, but magnitude bounds may be determined from input-output
measurements and other available information. A typical bound for

| H,,(jw)| is shown in Figure 5.4.
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|Amytiwl Am(jw)]
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|

Figure 5.4: Typical Plot of Uncertainty |I;V,,,(jw)| and
|Hmu(jw)|

_ Gi\{en the desired transfer function A (s), one attempts to build a
linear, time-invariant controller of the form shown in Figure 5.5, with
feedforward compensator C(s) and feedback compensator F (s), so that

the nominal closed-loop transfer function approximately matches the
reference model, that is,

-1

Bs)C(s) [1 + FO)P()C)| ~ M@) (5.1.4)

Cts) i1+ o

A
Fls) |-

Figure 5.5: Non-adaptive Controller Structure

over the frequency range of interest (the frequency range of r). Further,

C(s) and F.(Af).are chosen so as to at least preserve stability and also
reduce sensitivity of the actual closed-loop transfer function to the

modeling errors represented by ﬁa, or fI,,, within some given bounds.
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Adaptive Control. The designer makes a distinction between the two
kinds of uncertainty present in the description of Figures 5.1-5.2: the
parametric or structured uncertainty in the pole and zero locations and
the inherent or unstructured uncertainty due to additional dynamics
beyond wy. Rather than postulate a transfer function for the plant, the
designer decides to identify the pole-zero locations on-line, i.e. during
the operation of the plant. This on-line “tune-up” is for the purpose of
reduction of the structured uncertainty during the course of plant opera-
tion. The aim is to obtain a better match between M (s) and the con-
trolled plant for frequencies below wy . A key feature of the on-line tun-
ing approach is that the controller is generally nonlinear and time-
varying. The added complexity of adaptive control is made worthwhile
when the performance achieved by non-adaptive control is inadequate.

The plant model for adaptive control is given by

P(s) = Pp(s) + Hyls) (5.1.5)
or
P(s) = Pp(s)(1 + Hpuls)) (5.1.6)

where 13,,-(3) stands for the plant indexed by the parameters 6* and
I?a,,(s) and f;',,,u(s) are the additive and multiplicative uncertainties
respectively. The difference between (5.1.2)-(5.1.3) and (5.1.5)—(5.1.6)
lies in the on-line tuning of the parameter 6° to reduce the uncertainty,
so that it only consists of the unstructured uncertainty due to high-
frequency unmodeled dynamics.

When the plant is unstable, a frequency response curve as shown in
Figures 5.1-5.2 is not available, and a certain amount of off-line
identification and detailed modeling needs to be performed. As before,
however, the plant model will have both structured and unstructured
uncertainty, and the design options will be the same as above. The
difference only arises in the representation of uncertainty. Consider, for
example, the multiplicative uncertainty in the nonadaptive and adaptive

cases. Previously, I-?,,,(s) was stable. However, when the plant is
unstable, since the nominal locations of the unstable poles may not be

chosen exactly, ﬁm(s) may be an unstable transfer function. For adap-
tive control, we require merely that all unstable poles of the system be
parameterized (of course, their exact location is not essential!), so that

the description for the uncertainty is still given by (5.1.6), with ﬁmu(s)
stable, even though Pg.(s) may not be.

A simple example illustrates this: consider a plant with transfer
function
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m
(s-1+¢(s+m)

P(s) = (5.1.7)

with ¢> 0 small and m > 0 large.
For non-adaptive control, the nominal plant is chosen to be 1 /s -1, so
that

-2+ 5-e(s+m)
s-1+e(s+m)

Houls) = (unstable) (5.1.8)

For adaptive control on the other hand, f’,,-(s) =1/(s +6% is chosen
with

Hyuls) = —ﬁr; (stable) (5.1.9)

and 0 = -1 +e.
In the preceding chapters, we only considered the adaptive control
of plants with parameterized uncertainty, i.e., control of 13,,..
Specifically, we choose 130. of the form k, ﬁ,,/&’,,, where 7,, ﬁp are monic,
coprime polynomials of degrees m, n respectively. We assumed that
(a) The number of poles of f’,,., that is, n, is known.
(b) The number of zeros of 130-, that is, m < n, is known.
(c) The sign of the high-frequency gain k, is known (a bound may also
be required) .
(d) f’a- is minimum phase, that is, the zeros of 7, lie in the open left
half plane (LHP).
It is important to note that the assumptions apply to the nominal plant
P,,. In particular, P may have many more stable poles and zeros than

P . Further, the sign of the high-frequency gain of P is usually indeter-
: minate as shown in Figure 5.1.

The question is, of course,, how will the adaptive algorithms

described in previous chapters behave with the true plant P? A basic
desirable property of the control algorithm is to maintain stability in the
presence of uncertainties. This property is usually referred to as the
robustness of the control algorithm.

A major difficulty in the definition of robustness is that it is very
problem dependent. Clearly, an algorithm which could not tolerate any
uncertainty (that is, no matter how small) would be called non robust.
However, it would also be considered non robust in practice, if the range
of tolerable uncertainties were smaller than the actual uncertainties
present in the system. Similarly, an algorithm may be sufficiently robust
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for one application, and not for another. A key set of observatiqns
made by Rohrs, Athans, Valavani & Stein [1982, 1985] is that adap}we
control algorithms which are proved stable by the techniques of previous
chapters can become unstable in the presence of mild unmodfeled
dynamics or arbitrarily small output disturbances. We start by review-
ing their examples.

5.2 THE ROHRS EXAMPLES

Despite the existence of stability proofs for adaptive control systems (cf.
Chapter 3), Rohrs et al [1982], [1985] showed that several algorithms
can become unstable when some of the assumptions required by the sta-
bility proofs are not satisfied. While Rohrs (we drop the et al for' com-
pactness) considered several continuous and discrete time algorithms,
the results are qualitatively similar for the various schemes. We con-
sider one of these schemes here, which is the output error direct adap-
tive control scheme of Section 3.3.2, assuming that the degree and the
relative degree of the plant are 1.

The adaptive control scheme of Rohrs examples is designed assum-
ing a first order plant with transfer function

. k
Py(s) = - +”ap (5.2.1)

and the strictly positive real (SPR) reference model

- k 3
= mo- 5.2.2
M(s) S+ a, s+3 ( )

The output error adaptive control scheme (cf. Section 3.3.2) is described
by

u = cor +doy, (5.2.3)
€ = Vp = Ym (5.2.4)
¢o = —geor (5.2.5)
dy = -geoy, (5.2.6)

As a first step, we assume that the plant transfer function is given
by (5.2.1), with k, = 2, a, = 1. The nominal values of the controller
parameters are thén

Km

Emo _ 5.2.7
k, 1.5 ( )

Ccy =
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dg = 2% _ (5.2.8)
ky

The behavior of the adaptive system is then studied, assuming that
the actual plant does not satisfy exactly the assumptions on which the
adaptive control system is based. The actual plant is only approximately
a first order plant and has the third order transfer function

2 229
s+ 1§24 305 + 229

In analogy with nonadaptive control terminology, the second term
is called the unmodeled dynamics. The poles of the unmodeled dynam-
ics are located at - 15+ 2, and, at low frequencies, this term is approxi-
mately equal to 1.

In Rohrs examples, the measured output y,(¢) is also affected by a

measurement noise n(¢). The actual plant with the reference model and
the controller are shown in Figure 5.6.

P(s) =

(5.2.9)

3 Ym(t)

§+3 l
- 8,ft)

n(t)

l +
ul 2 229 yptt)
(o) 1 Facsrzae [T

o
)./

Figure 5.6: Rohrs Example—Plant, Reference Model, and Controller

) |

An important aspect of Rohrs examples is that the modes of the
actual plant and those of the model are well within the stability region.
Moreover, the unmodeled dynamics are well-damped, stable modes.
From a traditional control design standpoint, they would be considered
rather innocuous.

At the outset, Rohrs showed through simulations that, without
measurement noise or unmodeled dynamics, the adaptive scheme is
stable and the output error converges to zero, as predicted by the stabil-
ity analysis.

However, with unmodeled dynamics, three different mechanisms of
instability appear:

Section 5.2
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With a large, constant reference input and no measurement

noise, the output error initially converges to zero, but eventually
diverges to infinity, along with the controller parameters ¢ and
do.

Figures 5.7 and 5.8 show a simulation with r(¢) = 4.3, n(¢) = 0,
that illustrates this behavior (cg(0) = 1.14, do(0) = - 0.65 and
other initial conditions are zero).

0 2.5 5.0 7.5 10.0

Time(s)

Figure 5.7 Plant Output (r = 4.3, n = 0)

With a reference input having a small constant component and a
large high frequency component, the output error diverges at first
slowly, and then more rapidly to infinity, along with the con-
troller parameters ¢, and dj.

Figures 5.9 and 5.10 show a simulation with r(¢) = 0.3 +
1.85sin 16.1¢, n(t) = 0 (¢co(0) = 1.14, do(0) = - 0.65, and other
initial conditions are zero).

With a moderate constant input and a small output disturbance,
the output error initially converges to zero. After staying in the
neighborhood of zero for an extended period of time, it diverges
to infinity. On the other hand, the controller parameters ¢y and
d, drift apparently at a constant rate, until they suddenly diverge
to infinity. ’
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Figure 5.8 Controller Parameters (r=43,n=0)
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Figure 5.9 Plant Output (r = 0.3+ 1.85sin 16.1¢ ,h=0)
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Time(s)

Figure 5.10 Controller Parameters (r = 0.3 + 1.85sin 16.1¢ ,h=20)

Figures 5.11 and 5.12 show a simulation with r¢) =2, n(t) =
0.5sin16.11  (co(0) = 1.14, dy(0) = -0.65, and other initial
conditions are zero).

Although this simulation corresponds to a comparatively high
value of n(r), simulations show that when smaller values of the
output disturbance n(r) are present, instability still appears, but
after a longer period of time. The controller parameters simply
drift at a slower rate. Instability is also observed with other fre-
quencies of the disturbance, including a constant n(t).

Rohrs examples stimulated much research about the robustness of adap-
tive systems. Examination of the mechanisms of instability in Rohrs
examples show that the instabilities are related to the identifier. In
identification, such instabilities involve computed signals, while in adap-
tive control, variables associated with the plant are also involved. This
justifies a more careful consideration of robustness issues in the context
of adaptive control.

3.3 ROBUSTNESS OF ADAPTIVE ALGORITHMS WITH PER-
SISTENCY OF EXCITATION

Rohrs examples show that the bounded-input bounded-state (BIBS) sta-
bility property obtained in Chapter 3 is not robust to uncertainties. In
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Figure 5.12 Controller Parameters (r = 2, n = 0.5sin 16.1¢)
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some cases, an arbitrary small disturbance can destabilize an adaptive
system, which is otherwise proved to be BIBS stable. In this section, we
will show that the property of exponential stability is robust, in the sense
that exponentially stable systems can tolerate a certain amount of distur-
bance. Thus, provided that the nominal adaptive system is exponen-
tially stable (guaranteed by a persistency of excitation (PE) condition),
we will obtain robustness margins, that is, bounds on disturbances and
unmodeled dynamics that do not destroy the stability of the adaptive
system. Our presentation follows the lines of Bodson & Sastry [1984].

Of course, the practical notion of robustness is that stability should
be preserved in the presence of actual disturbances present in the sys-
tem. Robustness margins must include actual disturbances for the adap-
tive system to be robust in that sense. The main difference from classi-
cal linear time-invariant (LTI) control system robustness margins is that
robustness does not depend only on the plant and control system, but also
on the reference input, which must guarantee persistent excitation of the
nominal adaptive system (that is, without disturbances or unmodeled
dynamics).

5.3.1 Exponential Convergence and Robustness
In this section, we consider properties of a so-called perturbed system

x = f(t,x,u) x(0) = xq (5.3.1)

and relate its properties to those of the unperturbed system
x = f(t,x,0) x(0) = Xxg (5.3.2)

where ¢t > 0,.x e R”, u e R™. Depending on the interpretation, the sig-
nal u will be considered either a disturbance or an input.

We restrict our attention to solutions x and inputs u belonging to
some arbitrary balls B, € R" and B, e R™.

Theorem 5.3.1 Small Signal I/O Stability

Consider the perturbed system (5.3.1) and the unperturbed system
(5.3.2). Let x = 0 be an equilibrium point of (5.3.2), i.e,, f(¢, 0,0) = 0,
for all £ =2 0. Let f be piecewise continuous in ¢ and have continuous
and bounded first partial derivatives in x, for all ¢ 2 0, x € By, u € B,.
Let f be Lipschitz in u, with Lipschitz constant /,, for all ¢ 2 0, x € By,
ueB, Letu € Loo.

If x =0 is an exponentially stable,equilibrium point of the unper-

turbed system
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Then
(a) The perturbed system is small-signal L o™ stable, that is, there
exist v , ¢ >0, such that || ull , <¢, implies that

Xl < v llull < (5.3.3)

where x is the solution of (5.3.1) starting at xy = 0;
(b) There exists m =1 such that, for all |xo <h/m,
O<|lull , <c,, implies that x(¢) converges to a B; ball of radius

6=yl ull ,<h, that is: for all ¢>0, there exists 7 = 0 such
that

[x(D)] < (1+¢b (5.3.4)

for all 1 > T, along the solutions of (5.3.1) starting at x;. Also, for
allt =20, |x(t)] <h.

Comments

Part (a) of theorem 5.3.1 is a direct extension of theorem 1 of
Vidyasagar & Vannelli [1982] (see also Hill & Moylan [1980]) to the non
autonomous case. Part (b) further extends it to non zero initial condi-
tions.

Theorem 5.3.1 relates internal exponential stability to external
input/output stability (the output is here identified with the state). In
contrast with the definition of BIBS stability of Section 3.4, we require a
linear relationship between the norms in (5.3.3) for L oo Stability.

Although lack of exponential stability does not imply input/output
instability, it is known that simple stability and even (non uniform)
asymptotic stability are not sufficient conditions to guarantee 1/O stabil-
ity (see e.g., Kalman & Bertram [1960], Ex. §, p. 379).

Proof of Theorem 5.3.1

The differential equation (5.3.2) satisfies the conditions of theorem 1.5.1,

so that there exists a Lyapunov function v(z, x) satisfying the following
inequalities

aj|x|? < v(t,x) < ay|x|? (5.3.5)

dv(’ X) | - ay]x|2 (5.3.6)

(5.3.2)

av(t,x
I—V—(a;—l| < aqlx| (5.3.7)
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for some strictly positive constants «; - - - a4, and for all ¢ = 0, x € B,.

If we consider the same function to study the perturbed differential
equation (5.3.1), inequalities (5.3.5) and (5.3.7) still hold, while (5.3.6) is
modified, since the derivative is now to be taken along the trajectories of
(5.3.1) instead of (5.3.2). The two derivatives are related through

dv(t, x) _ av(t, x) (e, x)f(t x, u)
dt lsa ot :21 ax; N ,
dv(t Xx) « (1, x)
|(532) z;l 0x;

[fi(l,X,u)—fi(l,x,O)] (5.3.8)
Using (5.3.5)-(5.3.7), and the Lipschitz condition on f

e, x) < —as|x|?+ aglx] L] ull (5.3.9)
dt (5.3.1)
Define
1
[0 ¥ an 2
_ %4, 1x 5.3.10
o s 5210
5 1= |u[| (5.3.11)
m = [ ] 1 (5.3.12)
Inequality (5.3.9) can now be written
dv(t, x)l < —as)x| [|x| - i] (5.3.13)
(5.3.1) m

This inequality is the basis of the proof.

Part (a) Consider the situation when | xo| < 8/ m (this is true in partic-
ular if xy = 0). We show that this implies that x(¢) € B; forall ¢t =20
(note that 6/ m < 6, since m = 1).

Suppose, for the sake of contradiction, that it were not. true. Then,

by continuity of the solutions, there would exist T, T (T,> T(=0),
such that

|x(Tg)| =d6/m and |[x(T))| >é
and for all ¢t € [Ty, T]:|x(t)] =25/ m. Consequently, inequality
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(5.3.13) shows that, in [Ty, T;], v < 0. However, this contradicts the
fact that

V(To, x(To))S ay(8/ m)*= ;82
and
VT, x(T})> a8

Part (b) Assume now that | xo| >8/m. We show the result in two steps.
(b1) for all e> 0, there exists T = 0 such that | x(T)| < (6/m) (1 +¢).
Suppose it was not true. Then, for some ¢>0 and forall ¢t = 0

[ x(O >/ m)(1+¢
and, from (5.3.13)

v<—-a3(6/my(1+ee

which is a strictly negative constant. However, this contradicts the fact
that

hZ
(0, x0) < aj|xol? < o o

and v(z,x(¢))=0 for all ¢t = 0, Note that an upper bound on T is

a2h2

T < 3
a36°e

b2) for all t 27T, |x(t)] <é(1+¢). This follows directly from (bl),
using an argument identical to the one used to prove (a).

Finally, recall that the assumptions require that x(¢) € By,
u(t) € B, for all t 2 0. This is also guaranteed, using an argument
similar to (a), provided that |xo| <h/m and || ufj <c_ , where m is
defined in (5.3.12), and

c_ = min(c,h/'yoo) (5.3.14)

e o]
(5.3.14) implies that 6<h, and |xo| < h/m < h implies that |x(¢)
<m|xo| <h forallt = 0.

Note that although part (a) of the proof is, in itself, a result for non
zero initial conditions, the size of the ball B;,,, involved decreases when
the amplitude of the input decreases, while the size of By ,,, is indepen-
dent of it. 0O
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Additional Comments

a) The proof of the theorem gives an interesting interpretation of the
interaction between the exponential convergence of the original system
and the effect of the disturbances on the perturbed system. To see this,
consider (5.3.9): the term - a3|x|? acts like a restoring force bringing
the state vector back to the origin. This term originates from the
exponential stability of the unperturbed system. The term
ag| x| | ull o, acts like a disturbing force, pulling the state away from
the origin. This term is caused by the input u (i.e. by the disturbance
acting on the system). While the first term is proportional to the norm
squared, the second is only proportional to the norm, so that when | x|
is sufficiently large, the restoring force equilibrates the disturbing force.
In the form (5.3.13), we see that this happens when
x| =6/m =~_/m|ulf_.

b) If the assumptions are valid globally, then the results are valid glo-
bailly too. The system remains stable and has finite I/O gain, indepen-
dent of the size of the input. In the example of Section 5.3.2, and for a
wide category of nonlinear systems (bilinear systems for example), the
Lipschitz condition is not verified globally. Yet, given any balls B, B,
the system satisfies a Lipschitz condition with constant /, depending on
the size of the balls (actually increasing with it). The balls B, B, are
consequently arbitrary in tha; case, but the values of Yoo (the L‘Jo gain)
and ¢ (the stability margin) will vary with them. In general, it can be
expected that ¢ . will remain bounded despite the freedom left in the
choice of & and ¢, so that the I/O stability will only be local.

¢)  Explicit values of v o and ¢ can be obtained from parameters of
the differential equation, using equations (5.3.10) and (5.3.14). Note
that if we used the Lyapunov function satisfying (5.3.5)-(5.3.7) to obtain
a convergence rate for the unperturbed system, this rate would be
a3/2ay. Therefore, it can be verified that, with other parameters
remaining identical, the L  gain is decreased and the stability margin
Coo is increased, when the rate of exponential convergence is increased.

5.3.2 Robustness of an Adaptive Control Scheme

For the purpose of illustration, we consider the output error direct adap-
tive control algorithm of Section 3.3.2, when the relative degree of the
plant is 1. This example contains the specific cases of the Rohrs exam-
ples.

In Section 3.5, we showed that the overall output error adaptive
scheme for the relative degree 1 case is described by (cf. (3.5.28))
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é(t) = Ame(t) + buod” (1) Wn(t) + bmo™ (1) Q e(t)
$(t) = - geme(t) wn(t) - gehe(t) Q e(t) (5.3.15)

where e(t)eIR*-2% and ¢(.)eR?. 4, is a stable matrix, and

wn(t) € R is bounded for all ¢ 2 0. (5.3.15) is a nonlinear ordinary
differential equation (actually it is bilinear) of the form

= f(@t,x) x(0) = xg (5.3.16)
which is of the form (5.3.2), where

1]

[g] e R%-2 (5.3.17)

Recall that we also found, in Section 3.8, that (5.3.15) (i.e. (5.3.16)) is
exponentially stable in any closed ball, provided that w,, is PE.

Robustness to OQutput Disturbances
Consider the case when the measured output is affected by a measure-

ment noise n(¢), as in Figure 5.6. Denote by y, the output of the plant

ﬁg-(s) (that is the output without measurement noise) and by y,(¢), the
measured output, affected by noise, so that

Yo(t) = ypt) + n(t) = Pp(u) + n(t) (5.3.18)

To find a description of the adaptive system in the presence of the
measurement noise n(t), we return to the derivation of (5.3.15) (that is

(3.5.28)) in Section 3.5. The plant 13,,- has a minimal state-space
representation [4,, by, c} ] such that

Xp = Apxp + byu

vy o= ¢fx, (5.3.19)
The observers are described by

]

w = Aw® 4 by

w® = Aw@ 4+ by,

Aw® 4+ bcIx, + byn (5.3.20)
and the control input is givenby v = 7w = ¢Tw + 9w

As previously, we let x], = (x], w W'y Using the definition
of A,,, b, and c,, in (3.5.18)-(3.5.19), the description of the plant with
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controller is now

Xpw = AmXpy + by ¢TW + bpcir + byn

Vo = ChXpw (5.3.21)

where we define b7 = (0,0, 57) e (R", R*"!, R*"!) = R3 -2,
As previously, we represent the model and its output by

Xm AmXm + bl r
Ym = CF X (5.3.22)

and we let e = X, — Xp.
The update law is given by

QS = “'g(yp".))m)w
= —gchew —gnw (5.3.23)
and the regressor is now related to the state ¢ by
W?l) w“) wib 8
w o= Y, =W, + n
2

w w(z) w(:) 0

= Wy + Qe + qun (5.3.24)

where we define gJ = (0,0, 1,0) ¢ (R,R"",R,IR"*!) = R?".

Using these results, the adaptive system with measurement noise is
described by

ét) = Ape(t) + byudT (1) wm(t) + bno™ (1) Qe(t)
+ b @T(1) qun(t) + byn(t)
é(t) = -gehe(t) wnlt) - gehe(r) Qe(t) - gehe(t) gun (2)

- gn(t) wy(t) - gn(t) Qe(t) - gn*(t) g, (5.3.25)

which, with the definition of x in (5.3.17) and the definition of [ in
(5.3.15)-(5.3.16) can be written
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x = f{t,x)+ p(t) + Py(t)x(t) (5.3.26)
where p,(t) € R*~%and P5(t) € IR3"~2%5"-2 are given by
B b,n(t)
Pt = | - gn(1) (1) - gn*(1) 4,
0 bun(t)qn
Py(t) = (5.3.27)
| -gn(t)gnem -gn()Q 0

Note that if n € Lw, then p, and P; € Loo. Therefore, the per-
turbed system (5.3.26) is a special form of system (5.3.1), where u con-
tains the components of p; and P,. Although p(t) depends quadrati-
cally on n, given a bound on n, there exists k, = 0 such that

21l + 1 Pall o = Kull 2]l o (5.3.28)

From these derivations, we deduce the following theorem.

Theorem 5.3.2 Robustness to Disturbances

Consider the output error direct adaptive control scheme of Section
3.2.2, assuming that the relative degree of the plant is 1. Assume that
the measured output y, of the plant is given by (5.3.18), where n € Loo.
Let 2 >0.

If W, is PE
Then  there exists v,, ¢,>0 and m 2 1, such that | a||  <¢, and

| x(0)] < h/m implies that x(¢) converges to a B; ball of radius
o=y |l nlf o, with [x(2)] < m]xo| <h forallz 2 0.

Proof of Theorem 5.3.2

Since w,, is PE, the unperturbed system (5.3.15) (i.e. (5.3.16)) is
exponentially stable in any B, by theorem 3.8.2, The perturbed system
(5.3.25) (i.e. (5.3.26)) is a special case of the general form (5.3.1), so that
theorem 5.3.1 can be applied with u containing the components of
Di(t),Py(t). The results on p,(¢),Py(¢) can be translated into similar
results involving n(¢), using (5.3.28). 0O

Comments

a) A specific bound ¢, on || n||  can be obtained such that, within
this bound, and provided the initial error is sufficiently small, the stabil-
ity of the adaptive system will be preserved. For this reason, ¢, is called a
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robustness margin of the adaptive system to output disturbances.

b) The deviations from equilibrium are locally at most proportional to
the disturbances (in terms of L . norms), and their bounds can be made
arbitrarily small by reducing the bounds on the disturbances.

¢) ThelL o gain from the disturbances to the deviations from equili-
brium can be reduced by increasing the rate of exponential convergence
of the unperturbed system (provided that other constants remain identi-
cal). :

d) Rohrs example (R3) of instability of an adaptive scheme with out-
put disturbances on a non persistently excited system, is an example of
instability when the persistency of excitation condition of the nominal
system is not satisfied.

Robustness to Unmodeled Dynamics

We assume again that there exists a nominal plant 13,,~(s), satisfying the
assumptions on which the adaptive control scheme is based, and we
define the output of the nominal plant to be

v = Ppu) (5.3.29)

The actual output is modeled as the output of the nominal plant, plus
some additive uncertainty represented by a bounded operator H,

yp(t) = yp(t) + Hg(u)(t) (5.3.30)

The operator H, represents the difference between the real plant, and the
idealized plant P(s). We refer to it as an additive unstructured uncer-
tainty, and it constitutes all the uncertainty, since it is the purpose of the
adaptive scheme to reduce to zero the structured or parametric uncer-
tainty.

We assume that H,: Lwe-—»Looe is a causal operator satisfying

| Hau) Nl oy < vall 1l o + Ba (5.3.31)

for all £+ 20. B, may include the effect of initial conditions in the unmo-
deled dynamics and the possible presence of bounded output distur-
bances.

The following theorem guarantees the stability of the adaptive sys-
tem in the presence of unmodeled dynamics satisfying (5.3.31).
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Theorem 5.3.3 Robustness to Unmodeled Dynamics

Consider the output error direct adaptive control scheme of Section
3.3.2, ass_uming that the relative degree of the plant is 1. Assume that
the nominal plant output and actual measured plant output satisfy

(5.3.29)—(5.3.30), where 130- satisfies the assumptions of Section 3.3.2. H,
satisfies (5.3.31) and is such that trajectories of the adaptive system are
continuous with respect to ¢.

If Wy, 1s PE
Then  for X0, Yar Ba sufficiently small, the state trajectories of the
adaptive system remain bounded.

Proof of Theorem 5.3.3

Let T>0 such that x(¢)<h for all ¢ € [0,T]. Define n = Hy(u), so
that, by assumption

7l g = Yall thll oo + Ba (5.3.32)
forall ¢ e [0,T]. Using (5.3.24), the input u is given by

T
u = 0w = "w+o’w

i

0" Wy + 0° Qe + 6% qun + ¢Twy, + 6TQe + + ¢Tqun (5.3.33)

Since x € By, there exist v, 8, = 0 such that

luidly < vullnill o+ B (5.3.34)
forall ¢t e [0,T]. Let v,, 8, sufficiently small that
YaYu < 1 (5.3.35)
Batvaby _ (5.3.36)
L= vu

where ¢, is the constant found in theorem 5.3.2. Applying the small
gain theorem (lemma 3.6.6), and using (5.3.32), (5.3.35) and (5.3.36), it
follows that || n, loo <¢n- By theorem 5.3.2, this implies that |x(¢)] <h
for all ¢ € [0,T). Since none of the constants vy,, 8, v, and B, is
dependent on T, |x(¢)] <h for all £ >0. Indeed, suppose it was not
true. Then, by continuity of the solutions, there would exist a T'>0
such that |x(¢)| <h for all ¢t € [0,T], and x(T)=h. The theorem
would then apply, resulting in a contradiction since | x(T)| <h. 0O
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Comments

Condition (5.3.24) is very general, since it includes possible nonlineari-
ties, unmodeled dynamics, and so on, provided that they can be
represented by additive, bounded-input bounded-output operators.

If the operator H, is linear time invariant, the stability condition is
a condition on the L _ gain of H,. One can use

w .
Ya = lhalls = [lho(D) dr (5.3.37)
0

where h,(r) is the impulse response of ﬁa. The constant 8, depends on
the initial conditions in the unmodeled dynamics.

The proof of theorem 5.3.3 gives some margins of unmodeled
dynamics that can be tolerated without loss of stability of the adaptive
system. Given 7,, 8, it is actually possible to compute these values.
The most difficult parameter to determine is possibly the rate of conver-
gence of the unperturbed system, but we saw in Chapter 4 how some
estimate could be obtained, under the conditions of averaging. Needless
to say the expression for these robustness margins depends in a complex
way on unknown parameters, and it is likely that the estimates would be
conservative. The importance of the result is to show that if the unper-
turbed system is persistently excited, it will tolerate some amount of dis-
turbance, or conversely that an arbitrary small disturbance cannot desta-
bilize the system, such as in example (R3).

5.4 HEURISTIC ANALYSIS OF THE ROHRS EXAMPLES

By considering the overall adaptive system, including the plant states,
observer states, and the adaptive parameters, we showed in Section 5.3
the importance of the exponential convergence to guarantee some
robustness of the adaptive system. This convergence depends especially
on the parameter convergence, and therefore on conditions on the input
signal r(¢).

A heuristic analysis of the Rohrs examples gives additional insight
into the mechanisms leading to instability, and suggest practical methods
to improve robustness. Such an analysis can be found in Astrom [1983],
and its success relies mainly on the separation of time scales between the
evolution of the plant/observer states, and the evolution of the adaptive
parameters. This separation of time scales is especially suited for the
application of averaging methods (cf. Chapter 4).

Following Astrom [1983], we will show that instability in the Rohrs
examples are due to one or more of the following factors
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a) the lack of sufficiently rich inputs to
[ allow for parameter convergence in the nominal system,

) prevent the drift of the parameters due to unmodeled
dynamics or output disturbances.
b) the presence of significant excitation at high frequencies, originating
either from the reference input, or from output disturbances. These sig-
nals cause the adaptive loop to try to get the plant loop to match the
model at high frequencies, resulting in a closed-loop unstable plant.

c) a large reference input with a non-normalized identification (adapta-
tion) algorithm and unmodeled dynamics, resulting in the instability of
the identification algorithm.

Analysis

Consider now the mechanisms of instability corresponding to these three
cases.

a)  Consider first the case when the input is not sufficiently rich (exam-
ple (R3)).

In the nominal case, the output error tends to zero. When the PE condi-
tion is not satisfied, the controller parameter does not necessarily con-
verge to its nominal value, but to a value such that the closed-loop
transfer function matches the model transfer function at the frequencies
of the reference input. Consider Rohrs example, without unmodeled
dynamics. The closed-loop transfer function from r — y,, assuming that
¢o and dj are fixed, is

D _ 0

7 s+1-2d (54.1)
If a constant reference input is used, only the DC gain of this transfer
function must be matched with the DC gain of the reference model.
This implies the condition that

2(30
1-2d,

=1 (5.4.2)

Any value of cq, dy satisfying (5.4.2) will lead to y, - y,,~0 as ¢t - oo
for a constant reference input. Conversely, when ey 0, so do ¢, and
dg, so that the assumption that ¢, d are fixed is justified.

If an output disturbance n(¢) enters the adaptive system, it can
cause the parameters ¢y, dy to move along the line (more generally the
surface) defined by (5.4.2), leaving eq = y, - ¥, at zero. In particular,
note that when output disturbances are present, the actual update law
for dy is not (5.2.6) anymore, but
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do = —8V3(Vs—Vm) - &Vmn ~ gn* (5.4.3)

where we find the presence of the term - gn?, which will tend to make
dg slowly drift toward the negative direction.

In example (R3), unmodeled dynamics are present, so that the
transfer function from r — y, is in fact given by

fp _ 458C0
7 (s+ 1)(s2+30s +229) - 4584,

which is identical to (5.4.1) for DC signals, but which is unstable for d
=0.5and dy < -17.03.

The result is observed in Figures 5.11 and 5.12, where dy slowly
drifts in the negative direction, until it reaches the limit of stability of
the closed-loop plant with unmodeled dynamics. This instability is
called the slow drift instability. The error converges to a neighborhood
of zero, and the signal available for parameter update is very small and
unreliable, since it is indistinguishable from the output noise n(¢). It is
the accumulation of updates based on incorrect information that leads to
parameter drift, and eventually to instability.

In terms of the discussion of Section 5.3, we see that the constant
disturbance - gn? is not counteracted by any restoring force, as would be
the case if the original system was exponentially stable. For example,
consider the case where n = 0.1sin16.1¢. Figure 5.13 shows the evolu-
tion of the parameter dy in a simulation where r(¢) = 2 and where
r(t) = 2sint. In the first case, the parameter slowly drifts, leading even-
tually to instability. When r(¢) = 2sin¢, so that PE conditions are

(5.4.4)

satisfied, the parameter dy deviates from dj but remains close to the
nominal value,

Finally, note that instabilities of this type can be obtained for sys-
tems of relative degree greater than two even without unmodeled
dynamics and can lead to the so-called bursting phenomenon (cf. Ander-
son [1985]). The presence of noise in the update law leads to drift in the
feedback coefficients to a region where they are large, resulting in a
closed loop unstable system and a large increase in eg. The output error
ep eventually converges back to zero, but a large ‘blip’ is observed. This
repeats at random instants, and is referred to as bursting. As before a
safeguard, against bursting is persistent excitation.

b) Consider now the case when the geference input, or the output dis-
turbance, contain a large component at a frequency where unmodeled
dynamics are significant (example (R2)).
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dg (r(t1=2)

do (r()=2sin 1)
| 1 !

| 1 ) |
0 50 100 150 200

Time(s)

Figure 5.13 Controller Parameter dy(n = 0.1sin 16.1¢)

Let us return to Rohrs example, with a sinusoidal reference input
r(t) = rgsin(wgt). With unmodeled dynamics, there are still unique
values of ¢y, dy such that the transfer function from r — y, matches M
at the frequency of the reference input wg. Without unmodeled dynam-
ics, these would be the nominal ¢, d§, but now they are the values cg',
dg" given by
458¢y

0 -3 (5.4.5)

(s + 1)(s? + 305 +229) - 4584 iy St3 ligy

where wq is the frequency of the reference input. Note that the values of

¢§ ,dg depend on M , 13, the unmodeled dynamics, and also on the
reference input r.

On the other hand, it may be verified through simulations that the
output error tends to zero and that the controller parameters converge to
the following values co_ and dp_(cf. Astrom [1983]).
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wp Co,, do,,
1 1.69 -1.26
2 1.67 —-1.44
5 1.53 -2.72

10 1.04 -7.31

It may be verified that these values are identical to ¢g , d¢ defined
earlier. Therefore, the adaptive control system updates the parameters,
trying to match the closed-loop transfer function—including the unmo-
deled dynamics—to the model reference transfer function. Note that the

parameter do_ = dy’ quickly decreases for wp>5. On the other hand, the

closed-loop system is unstable when do < -17.03 and d¢* < -17.03,
when wp > 16.09. Therefore, by attempting to match the reference
model at a high frequency, the adaptive system leads to an unstable
closed-loop system, and thereby to an unstable overall system.

This is the instability observed in example (R2). In contrast, Fig-
ure 5.14 shows a simulation where r = 0.3 + 1.85sin¢, that is where the
sinusoidal component of the input is at a frequency where model match-
ing is possible.

1.8
.,
0.6 —
0 -
-0.8
MM .
s /
i ] ] 1 1 I} ) i
0 25 50 75 100

Time(s)

Figure 5.14 Controller Parameters (r = 0.3 + 1.85sinz, n = 0)

Then, the parameters converge to values c¢, dg" close to ¢, dg, and the
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adaptive system remains stable, despite the unmodeled dynamics.

¢) Consider finally the mechanism of instability observed with a large
reference input (example (R1)).

This mechanism will be called the high-gain identifier instability.

Although we do not have explicitly a high adaptation gain g, recall that
the adaptation law is given by

Co -gegr (5.4.6)

dy = -geo¥y (5.4.7)

Roughly speaking, multiplying r by 2 means multiplying y,,, ¥, and eq by
2 and therefore is equivalent to multiplying the adaptation gain by 4.

The instabilities obtained for high values of the adaptation gain are
comparable to instabilities caused by high gain feedback in LTI systems
with relative degree greater than 2 (cf. Astrom [1983] for a simple root-
locus argument). A simple fix to these problems is to replace the
identification algorithm by a normalized algorithm.

5.5 AVERAGING ANALYSIS OF SLOW DRIFT INSTABILITY

As was pointed out in Section 5.4, Astrom [1983] introduced an analysis
of instability based on slow parameter adaptation, to separate the evolu-
tion of the plant/observer states and the adaptive parameters. The
phenomenon under study is the so-called slow drift instability and is
caused by either a lack of sufficiently rich inputs, or the presence of
significant excitation at high frequencies, originating either from the
reference input or output disturbances.

A heuristic analysis of this phenomenon was already given in the
preceding section. In this section, we make the analysis more rigorous
using the averaging framework of Chapter 4. In Section 5.5.1, we
develop general instability theorems for averaging of one and two time
scale systems. In Section 5.5.2, we apply these results to an output error
adaptive scheme. Our treatment is based on Riedle & Kokotovic [1985]
and Fu & Sastry [1986].

5.5.1 Instability Theorems Using Averaging

One Time Scale Systems

Recall the setup of Section 4.2, where we considered differential equa-
tions of the form

x = ef(t,x,¢ (5.5.1)

and their averaged versions
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Xgv = efzzv(xav) (5.5.2)
where
to+ T
fax) = lim lT [ e, x, 0)ds (5.5.3)
T 1o

assuming that the limit exists uniformly in ¢, and x. We will not repeat
the definitions and the assumptions (A1)~(A5) of Section 4.2, but we will
assume that the systems (5.5.1), (5.5.2) satisfy those identical assump-
tions. The reader may wish to review those assumptions before proceed-
ing with the proof of the following theorem.

Theorem 5.5.1 Instability Theorem for One Time Scale Systems

If the original system (5.5.1) and the averaged system (5.5.2)
satisfy assumptions (A1)-(AS5), the function fav (x) has continu-
ous and bounded first partial derivatives in x, and there exists a
continuously differentiable, decrescent function v(z, x) such that
i v(,0)=0
(i) v(z, x) > 0 for some x arbitrarily close to 0

(i) |£’V—(a’-;£)— | < k,| x| for some k;>0

(iv) the derivative of v(f, x) along the trajectories of (5.5.2)
satisfies

it x)I > ek x|? (5.5.4)
(5.5.2)
for some k,>0.

Then the original system (5.5.1) is unstable for e sufficiently small.

Remark

By an instability theorem of Lyapunov (see for example Vidyasagar
[1978]), the additional assumptions (i)-(iv) of the theorem guarantee
that the averaged system (5.5.2) is unstable. By definition, a system is
unstable if it is not stable, meaning that there exists a neighborhood of
the origin and arbitrarily small initial conditions so that the state vectors
originating from them are expelled from the neighborhood of the origin.

Proof of Theorem 5.5.1

As in Chapter 4, the first step is to use the transformation of lemma
4.2.3 to transform the original system. Thus, we use

X = z+ew(l,2) (5.5.5)

with w, (¢, z) satisfying, for some £(¢) € K
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lew (2, z)| < £(e)|z| (5.5.6)
lew | < £ (5.5.7)
dz

to transform (5.5.1) into
z = efa(z) + eplt, z, €) (5.5.8)

where p(t, z, €) satisfies
1p(t, 2, )l < ¥(o)]2] (5.5.9)

for some ¥ (¢) € K.

Now, consider the derivative of v (¢, z) along the trajectories of
(5.5.8), namely

i}(t,z)l - W, 2) + %Z—) epll, z, €) (5.5.10)
(5.5.8) (5.5.2) z
Using the inequalities (5.5.4) and (5.5.9), we have that
v(t,z)l > eky|z|2 - (k2] (5.5.11)
(5.5.8)

If ¢ is chosen so that k, — y(eg) k; >0, then it is clear that v(t, z) | s.5.5) is
positive definite. By the same Lyapunov instability theorem as was
mentioned in the remark preceding the theorem, it follows from (5.5.11)
that for e < ¢, the system (5.5.8) is unstable, and consequently so is the
original system (5.5.1). O

Comments

The continuously differentiable, decrescent function required by theore}n
5.5.1 can be found prescriptively, if the averaged system is linear, that is

Xay = €AXg (5.5.12)

and if 4 has at least one eigenvalue in the open right-half plane, but no
eigenvalue on the jw-axis. In this case, the function v can be chosen to
be

vx) = xTP x
where P satisfies the Lyapunov equation
ATP + P4 = I (5.5.13)

The Taussky lemma generalized (see Vidyasagar [1978]) says that P has
at least one positive eigenvalue, so that v(x) takes on positive values in
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some directions (and arbitrarily close to the origin). It is also easy to
verify that the conditions (iii), (iv) of theorem 5.5.1 are also satisfied by
v(x).

Two Time Scale Systems
We now consider the system of Section 4.4 namely

ef(t, x, ) ~ (5.5.14)
y = Ay +egt, x,y) (5.5.15)

with x € R",y € R™. The only difference between (5.5.14), (5.5.15)
and the system (4.4.1), (4.4.2) of Chapter 4 is that the 4 matrix of
(5.5.15) is now assumed to be constant and stable rather than a function
of x which is uniformly stable. The averaged system is

Xav = €[4 (Xay) (5.5.16)
where f,, (x) is defined to be

x

to+ T

. 1
Sa(x) = Tl-l-moo—f 'J;f(r, x, 0)dr (5.5.17)

The functions f, g satisfy assumptions (B1), (B2), (B3) and (BS5) (only
assumption (B4) is not necessary). As in the case of theorem 5.5.1, we
advise the reader to review the results of Section 4.4 before following the
next theorem.

Theorem 5.5.2 Instability Theorem for Two Time Scale Systems

If the original system (5.5.14), (5.5.15) and the averaged system
(5.5.16) satisfy assumptions (B1), (B2), (B3) and (BS5), along
with the assumption that there exists a continuously
differentiable decrescent function v(¢, x) such that
i v(¢£,0=0
(i) v(t, x) > O for some x arbitrarily close to 0

(iii) l ﬁ%zc—) I < k| x| for some k;>0

(iv) the derivative of v(t, x) along the trajectory of (5.5.16)
satisfies
W(e, x)l > eyl x|? (5.5.18)
(5.5.16)
for some k,> 0, i
Then  the original system (5.5.14), (5.5.15) is unstable for ¢ sufficiently
small.
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Proof of Theorem 5.5.2

To study the instability of (5.5.14), (5.5.15), we consider another decres-
cent function vy,

vi(t,x,p) = v(t,x)-k3y" Py (5.5.19)

where P is the symmetric positive definite matrix satisfying the
Lyapunov equation

ATP +PA = -1

Using the transformation of lemma 4.4.1, we may transform (5.5.14),
(5.5.15)—as in the proof of theorems 4.4.2 and 4.4.3 —into

z = efo(z) +epi(t,z,€) + epa(t, 2, ), €) (5.5.20)
y = Ay + eg(t, x(z), y) (5.5.21)
where p\(¢, z, €) and pi(¢, z, y, €) satisfy
1, 2, €)| < E(ky]z] (5.5.22)
[p2(t, 2, p, )| < ks|yl (5.5.23)

and ¢(¢) € K. Clearly, vi(¢, z, y)>0 for some (x, y) values arbitrarily
close to the origin (let y = 0 and use assumption (ii)). Now, consider
N, z, )| =6 D)| 4 kaly|? - 2eksyT Pl 2,9)
(5.5.20, 21) (5.5.20)

Using exactly the same techniques as in the proof of theorem 4.4.3 (the
reader may wish to follow through the details), it may be verified that

vl(t,z,y)l 2 ea(d)|z]?+q(9|yl?
(5.5.20, 21)
for some «(e)—>k, and g(e)—> k3 as e—» 0. Thus v, (¢, z, y) is a positive
definite function along the trajectories of (5.5.20, 21). Hence, the system
(5.5.20), (5.5.21) and consequently the original system (5.5.14), (5.5.15)
is unstable for e sufficiently small. O

Mixed Time Scales

As was noted in Chapter 4, a more general class of two-time scale sys-
tems arises in adaptive control, having the form

ef(t, x,)") (5.5.24)
y Ay + h(t, x) + eg'(t, x, ') (5.5.25)

Again, for simplicity, we let the matrix 4 be a constant matrix (we will
only consider linearized adaptive control schemes in the next section).

X
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In (5.5.24), (5.5.25), x is the slow variable but y’ has both a fast and a
slow component. As we saw in Section 4.4, the system (5.5.24), (5.5.25)
can be transformed into the system (5.5.20), (5.5.21) through the use of
the coordinate change

y =y -, x) (5.5.26)

where v(t, x) is defined to be

K _
v, x) = Ie"“"’)h(f, xX)dr (5.5.27)
0

The averaged system of (5.5.24), (5.5.25) of the form of (5.5.16) will
exist if the following limit exists uniformly in ¢y and x

1o+ T

; o |
Sfa(x) = Tlimoo—f J; [ (7, x,v(7, x))dr

The instability theorem of 5.5.2 is applicable with the additional
assumption (B6) of Section 4.4.

5.5.2 Application to the Output Error Scheme

Tuned Error Formulation with Unmodeled Dynamics

We will apply the results of the previous section to an output error adap-
tive control scheme (see Section 3.3.2) designed for a plant of order n
and relative degree one. The controller is, however, applied to a plant of
order n + n,, where the extra n, states represent the unmodeled dynam-
ics. In analogy to (3.5.16), the total state of the plant and observers

3n-2 . .
Xpw € R ™ satisfies the equations

Xp A, 00| | x b,
Wl = 10 A0 |wh] + |blu
0

L2 2
¥ bl 0 A |#®

Xp

[¢F00] [wh (5.5.28)
w®

]

Vp

(5.5.28) is precisely (3.5.16) with the difference that x, € R" "™ rather
to R",
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Now, it may no longer be possible to find a * € IR*" such that the
closed loop plant transfer function equals the model transfer function.
Instead, we will assume that there is a value of § which is at least stabil-
izes the closed loop system, and refer to it as the tuned value 6,. We
define

Ap+bp thC; b)‘CtT bp arl
A, = bydgscl  A+bed bdl (5.5.29)
b)‘Cg‘ 0 A

We will call A« the tuned closed-loop matrix (cf. (3.5.18)), and we define
the tuned plant as

Xpw. = A.Xpw. +b.c0-r

Voo = C1Xpun (5.5.30)
where
b, ¢
by = |b| e R*™™ 2 and ¢, =|0] e R*"*™2
0 0

Note the analogy between (5.5.30) and (3.5.20). Now, the transfer func-
tion of the tuned plant is not exactly equal to the transfer function of the
model, and the error between the tuned plant output and the model out-
put is referred to as the tuned error

€y = ,Vp*— Ym (5531)

Typically, the values 6, which are chosen as tuned values correspond to
those values of 6, for which the tuned plant transfer function approxi-
mately matches the model transfer function at low frequencies (at those
frequencies, the effect of unmodeled dynamics is small).

An error formulation may now be derived, with respect to the
tuned system instead of the model system of Section 3.5. Let §:=6-0,

represent the parameter error with respect to the tuned parameter value,
and rewrite (5.5.28) as

Ay, + b8TW + bucger
P 0

Xpw
Yo = cIxpy (5.5.32)

This is similar to (3.5.19). The output error parameter update law is
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6§ =6 = —geyw (5.5.33)
In turn the output error ey := Y, - ¥, can be decomposed as
€0 = Yp=Vm = Vp—Vpe t & (5.5.34)

Now, defining & = X,y — Xpuw« and &y = ¥, - y,. We may subtract equation
(5.5.30) from equation (5.5.31) to get

6 = A% +boTw

éy = cle (5.5.35)
along with the update law

§ = —g(cTé +e)w (5.5.36)

As in the ideal case, w can be written as w = w,+ Q¢ (with w, € IR
having the obvious interpretation), so that (5.5.35), (5.5.36) may be com-
bined to yield

A8 + b4 Tw, + bOTQE

e
i

A=Y

= -gclew, - gcTeQeé - geow. - ge Qe (5.5.37)

Comparing the equations (5.5.37) with the corresponding equation
(3.5.28) for the adaptive system, one sees the presence of two new terms
in the second equation. If the tuned error e, = 0, the terms disappear
and the equations (5.5.37) reduce to (3.5.28). The first of the new terms
is an exogenous forcing term and the second a term which is linear in

the error state variables. Without the term e,w.,, the origin é = 0,6 =0
is an equilibrium of the system. Consequently, we will drop this term
for the sake of our local stability/instability analysis. We will also treat
the second term ge,Q¢é as a small perturbation term (which it is if e, is
small) and focus attention on the linearized and simplified system

é = A6+ bwlo

TS
i

- gcTow, (5.5.38)

Averaging Analysis

To apply the averaging theory of the previous section, we set the gain
g = ¢, a small parameter. Since A4, is stable, it is easy to see that the sys-
tem (5.5.38) is of the form of the mixed time scale system (5.5.24),
(5.5.25) so that averaging may be applied. The averaged parameter error
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5av satisfies

5av = efav(gnzv) (5.5.39)
where f,,(6) is defined as
to+ T

S = —}gn;JT— [ wi(t) el ]e Cpwlinydr | dtd (5.5.40)
0

Note that f,,(f) is a linear function of § so that the stability/instability
of (5.5.38) for ¢ small is easily determined from (he eigenvalues of the
matrix in (5.5.36). As previously, the matrix in (5.5.40) may be written
as the cross-correlation at 0 between w,(¢) and

we(t) = [ e Dbw(r) dr (5.5.41)

O ~

Thus (5.5.40) may be written as
Sav®) = =Ry (0) 6 (5.5.42)

Frequency Domain Analysis

To derive a frequency domain interpretation, we assume that r is sta-
tionary. The spectral measure of w, is related to that of r by

Syldw) = Hy(jo) H (jo) S,(dw) (5.5.43)

therF: the transfer function from r to w, is ﬁw_,(s). This transfer func-
tion is obtained by denoting the transfer function of the tuned plant

cou cI(sT = A)"'b, = M.(s) (5.5.44)
so that

1

N (s] =A)~'bP M,
Hw.r(s) = M‘ (55.45)

(sI - A)~ b, M,

The cross-correlation between w, and Was is then given by
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Ry (0) = To o) By (jo) Mu(jo) Si(dw)  (5.5.46)
Note the similarity between (5.5.45), (5.5.46) and (4.5.6), (4.5.9) for
averaging in the ideal case. The chief difference is the presence of the

tuned plant transfer function M.(s) in place of the model transfer func-
tion M (s). M. .(s) may not be strictly positive real, even if M (s) is so.
Consequently R, oy (0) may not be a positive semi-definite matrix. Heu-
ristically speaking, if a large part of the frequency support of the refer-
ence signal lies in a region where the real part of M. (jw) is negative,
then R,, oy (0) may fail to be positive semi-definite.

It is easy to see that if all the eigenvalues of R, ,, (0) are in the
right half plane, the (simplified) overall system (5.5. 3[8) is globally
asymptotically stable for ¢ small enough. Also, if even one of the eigen-
values of Rw_w_ (0) lies in the left half plane, then the system (5.5.38) is
unstable (in the sense of Lyapunov). From the form of the integral in
(5.5.46), one may deduce that a necessary condition for Rw.w. (0) to have
no zero eigenvalues is for the reference input to have at least 2n points
of support. In fact, heuristically speaking, for RW_W_I(O) to have no nega-
tive eigenvalues, the reference input is required to have at least 2n
points of support in the frequency range where Re M.(Jw) > 0 (the rea-
son that this is heuristic rather than precise is because the columns of

w.,(]w) may not be linearly independent at every set of 2n frequencies).
Since the tuned plant transfer function M.(s) is close to the model
transfer function M (s) at least for low frequencies (where there are no
unmodeled dynamics), it follows that to keep the adaptive system stable,
sufficient excitation at lower frequencies is required. It is also important
to see that the stability/instability criterion is both signal-dependent as
well as dependent on the tuned plant transfer function M.(s).

It is important at this point to note that all of the analysis is being
performed on the averaged version of the simplified linearized system
(5.5.38). As far as the original system (5.5.31) is concerned, we can
make the following observations
a) If the simplified, linearized system (5.5.38) is exponentially stable,
then the original system (5.5. 37) is locally stable in the sense that if the
tuned error and the initial conditions on é,, g are sufficiently small, tra-
jectories will eventually be confined to a neighborhood of the origin (the

size of the neighborhood depends on e, and goes to zero as |e.(f)| goes
to zero). The proof of this follows from theorem 5.3.1.
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b)  If the simplified linearized system is unstable, then the original sys-
tem (5.5.37) is also unstable, using arguments from theorem 5.5.1.

Of course, the averaging analysis may be inconclusive if the aver-
aged system Rw.w_/(O) has some zero eigenvalues. In this instance, if
RW_W_I(O) has at least one eigenvalue in the open left half plane, then the
original system is unstable. However, if R, ,_(0) has all its eigenvalues
in the closed right half plane, including some at zero, the averaging is
inconclusive for (5.5.38) and for (5.5.37). Simulations seem to suggest
that, in this case, the parameter error vector § driven by e, drifts away
from the origin in the presence of noise. This is what happens in Rohrs
example (R3), where the reference input is only a DC input: e,
corresponding to the tuned error is small, since the closed loop plant
matches the model at low frequencies, but its place is taken by the out-
put disturbance which causes the parameters to drift away from their
tuned values.

The result of this section also makes rigorous the heuristic explana-
tion for the instability mechanism of the example in (R2) where a
significant high frequency signal is present in a range where the tuned
plant transfer function is not strictly positive real. A tuned plant is
easily obtained by removing the unmodeled poles at — 15+ 2 to get the
tuned values cg. = 1.5, dp. = | identical to 6°.

Example
In this section, we discuss an example from Riedle & Kokotovic [1985].
We consider the plant

kp

P(s) = 5.5.47
(s) ust+ (1 +ps+1 ( )

where p>0 is a small parameter., The adaptive controller is designed
assuming a first order plant with relative degree 1. Thus, we assume
that the ‘nominal’ plant is of the form

kp

Pr = —& (5.5.48)

with k, unknown. The model is of the form 1/(s + 1) and we set the
tuned value of ¢y, namely ¢y, to be 1/k, for the analysis. For the exam-
ple, k, is chosen to be 1. The error system is
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1
]= 0g —ﬂl —r(t) [] o r(t)edt)  (5.5.49)
-A1) 0 0

Note that (5.5.49) is simpler than (5.5.37) since there are no adaptive
parameters in the feedback loop. Rw.w. (0) is a scalar, and is easily com-
puted to be

* 1 - pw?
Ry (0 = | T L a T S (5.5.50)
-

Note that the integrand is positive for |w| <1 /\/; and negative for
|w| > 1/Vy. For example; if x = 0.1 and

ri(t) sin 5t Rw‘w_f(O) = -0.046
ry(t) 0.4sin¢ + sin 5¢ RW_W_I(O) = 0.026

Thus, the first input results in an unstable system and the second in a
stable one. These results are borne out in the simulations of Figure
5.15.

]
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-0.2 . 0.0 0.2 0.4 0.6

Figure 5.15  Stability-Instability: Boundary for r((¢) and
ro(t) = ri(t) + 0.4 sins. A
? l < N~ (gk)
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5.6 METHODS FOR IMPROVING ROBUSTNESS—
QUALITATIVE DISCUSSION

Adaptive systems are not magically robust: several choices need to be
carefully made in the course of design, and they need to explicitly take
into account the limitations and flexibilities of the rather general algo-
rithms presented in earlier chapters. We begin with a qualitative discus-
sion of methods to improve the robustness of adaptive systems. A
review of a few specific update law modifications is given in the next
section.

5.6.1 Robust Identification Schemes

An important part of the adaptive control scheme is the identifier, or
adaptation algorithm. When only parametric uncertainty is present,
adaptive schemes are proved to be stable, with asymptotic tracking.
Parameter convergence is not guaranteed in general, but is not necessary
to achieve stability. In the presence of unmodeled dynamics and meas-
urement noise, drift instabilities may occur, so that the spectral content
of the input becomes important. The robustness of the identifier is fun-
damental to the robustness the adaptive system, and may be influenced
by a careful design.

An initial choice of the designer is the frequency range of interest.
In an adaptive control context, it is the frequency range over which
accurate tracking is desired, and is usually limited by actuators’ band-
with and sensor noise.

The order of the plant model must then be selected. The order
should be sufficient to allow for modeling of the plant dynamics in the
frequency range of interest. On the other hand, if the plant is of high
order, a great deal of excitation (a number of independent frequencies)
will be required. The presence of a large parameter vector in the
identifier may also cause problems of numerical conditioning in the
identification procedure. Then, the covariance matrix R,(0) (see
Chapters 2 and 3) measuring the extent of persistent excitation, is liable
to be ill-conditioned, resulting in slow parameter convergence along cer-
tain directions in parameter space. In summary, it is important to
choose a low enough order plant model capable of representing all the
plant dynamics in the frequen:'y range of interest.

Filtering of the plant input and output signals is achieved by the
observer, with a bandwith determined by the filter polynomial (denoted

earlier A(s)). To reduce the effect of noise, it may be reasonable to
further filter the regression vectors in the identification algorithm, so as
to exclude the contribution of data from frequency regions lying outside
the range of frequencies of importance to the controller (i.e. low pass
filtering with a cut-off somewhat higher than the control bandwith).
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The spectrum of the reference input is another parameter, partially
left to the designer. Recall that the identifier identifies the portion of the
plant dynamics in the frequency range of the input spectrum. Thus, it is
important that the input signal: a) be rich enough to guarantee parame-
ter convergence, and b) have energy content in the frequency range
where the plant model is of sufficient order to represent the actual plant.
The examples of Rohrs consisted of scenarios in which a) the input was
not rich enough (only a DC signal), and b) the output had energy in the
frequencies of the unmodeled dynamics (a DC signal and a high-
frequency sinusoid). In the first case, noise caused parameter drift, con-
sistent with a good low frequency model of the plant, into a region of
instability. In the second, an incorrect plant model resulted in an
unstable loop.

From a practical viewpoint, it is important to monitor the signal
excitation in the identifier loop and to turn off the adaptation when the
excitation is poor. This includes the case when the level of excitation is
so low as to make it difficult to distinguish between the excitation and
the noise. It is also clear that if the excitation is poor over periods of
time where parameters vary, the parameter identification will be
ineffectual. In such an event, the only cure is to inject extra perturba-
tion signals into the reference input so as to provide excitation for the
identification algorithm.,

We summarize this discussion in the form of the following table for
a robust identification scheme.

Steps of Robust Identification
Step Considerations

1. Choice of the frequency
range of interest

Frequency range over which
tracking is desired

2. Plant Order Determination Modeling of the plant dynamics in
the frequency range of interest

Low

3. Regressor Filter Selection Filter high frequency components

(unmodeled dynamics range)

Sufficient richness
Spectrum within frequency range
of interest

4, Reference Input Selection
If not, check step §

S.  Turn off parameter update
when not rich enough
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If the excitation is not rich Limit perturbation to plant
over periods of time where

parameters vary,

add perturbation signal

5.6.2 Specification of the Closed Loop Control Objective—Choice of the
Reference Model and of Reference Input

The reference model must be chosen to reflect a desirable response of
the closed-loop plant. From a robust control standpoint, however, con-
trol should only be attempted over a frequency range where a satisfac-
tory plant model and controller parameterization exists. Therefore, the
control objective (or reference model choice) should have a bandwidth
no greater than that of the identifier. In particular, the reference model
should not have large gain in those frequency regions in which the
unmodeled dynamics are significant.

The choice of reference input is also one of the choices in the
overall control objective. We indicated above how important the choice
is for the identification algorithm. However, persistent excitation in the
correct frequency range for identification may require added reference
inputs not intended for tuned controller performance. In some applica-
tions (such as aircraft flight control), the insertion of perturbation signals
into the reference input can result in undesirable dithering of the plant
output. The reference input in adaptive systems plays a dual role, since
the input is required both for generating the reference output required
for tracking, as well as furnishing the excitation needed for parameter
convergence (this dual role is sometimes referred to as the dual control
concept).

5.6.3 The Usage of Prior Information

The schemes and stability proofs thus far have involved very little a
priori knowledge about the plant under control. In practice, one is often
confronted with systems which are fairly well modeled, except for a few
unknown and uncertain components which need to be identified. In
order to use the schemes in the form presented so far, all of the prior
knowledge needs to be completely discounted. This, however, increases
the order of complexity of the controller, resulting in extra requirements
on the amount of excitation needed. In certain instances, the problem
of incorporating prior information can be solved in a neat and consistent
fashion—for this we refer the reader to Section 6.1 in the next chapter.
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5.6.4 Time Variation of the Parameters

The adaptive control algorithms so far have been derived and analyzed
for the case of unknown but fixed parameter values. In practice, adap-
tive control is most useful in scenarios involving slowly changing plant
parameters. In these instances the estimator needs to converge much
faster than the rate of plant parameter variation. Further, the estimator
needs to discount old input-output data: old data should be discounted
quickly enough to allow for the estimator parameters to track the time-
varying ones. The discounting should not, however, be too fast since
this would involve an inconsistency of parameter values and sensitivity
to noise.

We conclude this section with Figure 5.16, inspired from Johnson
[1988], indicating the desired ranges of the different dynamics in an
adaptive system.

DESIRED
MODEL
PARAMETER REFERENCE UNMODELED
VARIATION BANDWIDTH DYNAMICS
i { t { } >
SPEED REFERENCE FREQUENCY
OF SIGNAL
ADAPTATION BANODWIDTH

Figure 5.16 Desirable Bandwidths of Operation of an Adap-
tive Control System,

5.7 ROBUSTNESS VIA UPDATE LAW MODIFICATIONS

In the previous sections, we reviewed some of the reasons for the loss of
robustness in adaptive schemes and qualitatively discussed how to
remedy them. In this section, we present modifications of the parameter
update laws which were recently proposed as robustness enhancement
techniques.

5.7.1 Deadzone and Relative Deadzone

The general idea of a deadzone is to stop updating the parameters when
the excitation is insufficient to distinguish between the regressor signal
and the noise. Thus, the adaptation is turned off when the identifier
error is smaller than some threshold.

More specifically, consider the input error direct adaptive control
algorithm with the generalized gradient algorithm and projection. The
update law with deadzone is given by
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. €,V .

0 = —-g ———— f A 1.1

o if |e2] > (5.7.1

6 =0 if |e;] < A (5.7.2)

and as before, if ¢g = ¢ iy and ¢ < 0, then set ¢y = 0. The parameter A
in equations (5.7.1) and (5.7.2) represents the size of the deadzone.
Similarly, the output error direct adaptive control algorithm with gra-
dient algorithm is modified to

b = -gey if |e)] > A (5.7.3)

§ =0 if e < A (5.7.4)

where A is, as before, the deadzone threshold. It is easy to see how the
other schemes (including the least-squares update laws) are modified.

The most critical part in the application of these schemes is the
selection of the width of the deadzone A. If the deadzone A is too large,
e, in equations (5.7.1), (5.7.2) and e, in (5.7.3), (5.7.4) will not tend to
zero, but will only be asymptotically bounded by a large A, resulting in
undesirable closed-loop performance. A number of recent papers (for
example, Peterson & Narendra [1982], Samson [1983], Praly [1983], Sas-
try [1984], Ortega, Praly & Landau [1985], Kreisselmeier & Anderson
[1986], Narendra & Annaswamy [1986]) have suggested different tech-
niques for the choice of the deadzone A. The approach taken by Peter-
son & Narendra [1982]—for the case when the plant output is corrupted
by additive noise—and by Praly [1983] and Sastry [1984]—for the case of
both output noise and unmodeled dynamics—is to use some prior
bounds on the disturbance magnitude and some prior knowledge about
the plant to find a (conservative) bound on A and establish that the
tracking error eventually converges to the region |e;| < A. The bounds
on A which follow from their calculations are, however, extremely con-
servative. From a practical standpoint, these results are to be inter-
preted as mere existence results. Practically, one would choose A from
observing the noise floor of the parameter update variable e, (with no
exogenous reference input present). It is also possible to modify it on-
line depending on the quality of the data.

The approach of Samson [1983], Ortega, Praly & Landau [1985]
and Kreisselmeier & Anderson [1986] is somewhat different in that it
involves a deadzone size A which is not determined by e, or e, alone,
but by how large the regressor signal in the adaptive loop is (the dead-
zone acts on a suitably normalized, relative identification error). The
logic behind this so-called relative deadzone is that if the regressor vector
is large, then the identification error may be large even for a small
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transfer function error due to unmodeled dynamics. The details of the
relative deadzone are somewhat involved (the three papers referenced
above are also for discrete time algorithms). However, the adaptive law
can only guarantee that the relative (or normalized) identification error
becomes smaller than the deadzone eventually. Thus, if the closed-loop
system were unstable, the absolute identification error could be
unbounded. To complete the proofs of stability with relative deadzones,
it is then important to prove that the regressor vector is bounded. It is
claimed (cf. Kreisselmeier & Anderson [1986]) that the relative deadzone
approach will not suffer from “bursting,” unlike the absolute deadzone
approach.

5.7.2 Leakage Term (o-Modification)

Ioannou & Kokotovic [1983] suggested modifying the parameter update
law to counteract the drift of parameter values into regions of instability
in the absence of persistent excitation. The original form of the
modification is, for the direct output error scheme

§ = -gev—-ab (5.7.5)

where ¢ is chosen small but positive to keep § from growing unbounded.
Two other interesting modifications in the spirit of (5.7.5) are

§ = -gev—-a@-8p) (5.7.6)

where 6 is a prior estimate of 6 (for this and other modifications see
Ioannou [1986] and Ioannou and Tsakalis [1986]), and one suggested by
Narendra and Annaswamy [1987]

= —geﬁ—alellé_ (5.7.7)

Both (5.7.6) and (5.7.7) attempt to capture the spirit of (5.7.5) without
its drawback of causing § -0 if ¢, is small. Equation (5.7.6) tries to
bias the direction of the drift towards 6, rather than 0 and (5.7.7) tries
to turn off the drift towards O when |e,| is small. The chief advantage
of the update law (5.7.7) is that it retains features of the algorithm
without leakage (such as convergence of the parameters to their true
values when the excitation is persistent). Also, the algorithm (5.7.7) may
be less susceptible to bursting than (5.7.5), though this claim has not
been fully substantiated.

5.7.3 Regressor Vector Filtering

The concept of low pass filtering or pre-conditioning the regressor vector
in the parameter update law was discussed in Section 5.6. It is usually
accomplished by low pass filtering of the process input and output in the
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identification algorithm and is widely prevalent (cf. the remarks in Wit-
tenmark & Astrom [1984]). Some formalization of the concept and its
analysis is in the work of Johnson, Anderson & Bitmead [1984]. The
logic is that low pass filtering tends to remove noise and contributions of
high frequency unmodeled dynamics.

5.7.4 Slow Adaptation, Averaging and Hybrid Update Laws

A key characteristic of the parameter update laws even with the addition
of deadzones, leakage and regressor vector filtering 1is their
“impatience.” Thus, if the identification error momentarily becomes
large, perhaps for reasons of spurious, transient noise, the parameter
update operates instantaneously. A possible cure for this impatience is
to slow down the adaptation. In Chapter 4, we studied in great detail
the averaging effects of using a small adaptation gain on the parameter
trajectories. In fact, a reduction of the effect of additive noise (by
averaging) is also observed.

Another modification of the parameter update law in the same
spirit is the so-called hybrid update law involving discrete updates of
continuous time schemes. One such modification of the gradient update
law (due to Narendra, Khalifa & Annaswamy [1985]) is

Lo

0tk o)) = 0() - [ge,vdz (5.7.8)

In (5.7.8), the ¢, refer to parameter update times, and the controller
parameters are held constant on [, . ;]. The law (5.7.8) relies on the
averaging inherent in the integral to remove noise.

Slow adaptation and hybrid adaptation laws suffer from two draw-
backs. First, they result in undesirable transient behavior if the initial
parameter estimates result in an unstable closed loop (since stabilization
is slow). Second, they are incapable of tracking fast parameter varia-
tions. Consequently, the best way to use them is after the initial part of
the transient in the adaptation algorithm or a short while after a parame-
ter change, which the “impatient” algorithms are better equipped to han-
dle.

5.8 CONCLUSIONS

In this chapter, we studied the problem of the robustness of adaptive
systems, that is, their ability to maintain stability despite modeling
errors and measurement noise.

We first reviewed the Rohrs examples, illustrating several mechan-
isms of instability. Then, we derived a general result relating exponen-
tial stability to robustness. The result indicated that the property of
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exponential stability is robust, while examples show that the BIBS stabil-
ity property is not (that is, BIBS stable systems can become unstable in
the presence of arbitrarily small disturbances). In practice, the ampli-
tude of the disturbances should be checked against robustness margins to
determine if stability is guaranteed. The complexity of the relationship
between the robustness margins and known parameters, and the depen-
dence of these margins on external signals unfortunately made the result
more conceptual than practical.

The mechanisms of instability found in the Rohrs examples were
discussed in view of the relationship between exponential stability and
robustness, and a heuristic analysis gave additional insight. Further
explanations of the mechanisms of instability were presented, using an
averaging analysis. Finally, various methods to improve robustness were
reviewed, together with recently proposed update law modifications.

We have attempted to sketch a sampling of what is a very new and
active area of research in adaptive systems. We did not give a formal
statement of the convergence results for all the adaptation law
modifications. The results are not yet in final form in the literature and
estimates accruing from systematic calculations are conservative and not
very insightful. A great deal of the preceding discussion should serve as
design guidelines: the exact design trade-offs will vary from application
to application. The general message is that it is perhaps not a good idea
to treat adaptive control design as a “black box” problem, but rather to
use as much process knowledge as is available in a given application.

A guideline for design might run as follows

a) Determine the frequency range beyond which one chooses not to
model the plant (where unmodeled dynamics appear) and find a
parameterization which is likely to yield a good model of the plant
in this frequency range, yet without excessive parameterization. If
prior information is available, use it (see Section 6.1 for more on
this).

b) Choose a reference model (performance objective) whose
bandwidth does not extend into the range of unmodeled dynamics.

¢) In the course of adaptation, implement the adaptive law with a
deadzone whose size is determined by observing the amount of
noise in the absence of exogenous input. Also, monitor the excita-
tion and turn off the adaptation when the excitation is not rich
over a large interval of time. If necessary, inject extra excitation
into the exogenous reference input as a perturbation signal. If it
appears that the plant parameters are not varying very rapidly,
slow down the rate of adaptation or use a hybrid update algorithm
(this is rather like a variable time step feature in numerical integra-
tion routines). Other modifications, such as leakage, may be added
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as desired.

d) Implement the appropriate start-up features for the algorithm using
prior knowledge about the plant to choose initial parameter values
and include “‘safety nets” to cover start-up, shut-down and transi-
tioning between various modes of operation of the overall con-
troller.

The guidelines given in this chapter are for the most part conceptual: in
applications, questions of numerical conditioning of signals, sampling
intervals (for digital implementations), anti-aliasing filters (for digital
implementations), controller-architecture featuring several levels of
interruptability, resetting, and so on are important. Even with a consid-
erable wealth of theory and analysis of the algorithms, the difference an
adaptive controller makes in a given application is chiefly due to the art
of the designer!

CHAPTER 6

ADVANCED TOPICS
IN IDENTIFICATION
AND ADAPTIVE CONTROL

6.1 USE OF PRIOR INFORMATION

6.1.1 Identification of Partially Known Systems

We consider in this section the problem of identifying partially known
single-input single-output (SISO) transfer functions of the form

No(s) +,§ a; Ni(s)
P(s) = Lo (6.1.1)
Do(s) - Z 6 Dy(s)
Jn

where 1\7,- and ij are known, proper, stable rational transfer functions
and «;, B; are unknown, real parameters. The identification problem is
to identify «;, 8; from input-output measurements of the system. The
problem was recently addressed by Clary [1984], Dasgupta [1984], and
Bai and Sastry [1986].

The representation (6.1.1) is general enough to model several kinds
of “partially known” systems.

Examples

a)  Network functions of RLC circuits with some elements unknown.
Consider for example the circuit of Figure 6.1, with the resistor R unk-
nown (the circuit is drawn as a two port to exhibit the unknown
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