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as desired.

d) Implement the appropriate start-up features for the algorithm using
prior knowledge about the plant to choose initial parameter values
and include “‘safety nets” to cover start-up, shut-down and transi-
tioning between various modes of operation of the overall con-
troller.

The guidelines given in this chapter are for the most part conceptual: in
applications, questions of numerical conditioning of signals, sampling
intervals (for digital implementations), anti-aliasing filters (for digital
implementations), controller-architecture featuring several levels of
interruptability, resetting, and so on are important. Even with a consid-
erable wealth of theory and analysis of the algorithms, the difference an
adaptive controller makes in a given application is chiefly due to the art
of the designer!

CHAPTER 6

ADVANCED TOPICS
IN IDENTIFICATION
AND ADAPTIVE CONTROL

6.1 USE OF PRIOR INFORMATION

6.1.1 Identification of Partially Known Systems

We consider in this section the problem of identifying partially known
single-input single-output (SISO) transfer functions of the form

No(s) +,§ a; Ni(s)
P(s) = Lo (6.1.1)
Do(s) - Z 6 Dy(s)
Jn

where 1\7,- and ij are known, proper, stable rational transfer functions
and «;, B; are unknown, real parameters. The identification problem is
to identify «;, 8; from input-output measurements of the system. The
problem was recently addressed by Clary [1984], Dasgupta [1984], and
Bai and Sastry [1986].

The representation (6.1.1) is general enough to model several kinds
of “partially known” systems.

Examples

a)  Network functions of RLC circuits with some elements unknown.
Consider for example the circuit of Figure 6.1, with the resistor R unk-
nown (the circuit is drawn as a two port to exhibit the unknown
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resistance).
2 l R Vg

T

Figure 6.1 Two Port with Unknown Resistance R

If the short circuit admittance matrix of the two port in Figure 6.1 is

i yuls) yias) v,
o= . (6.1.2)
i yai(s)  yaAs) V2

then a simple calculation yields the admittance function

LI Yu+R(ynyn-yay)
vy 1+ Ry
which is of the form of (6.1.1). Circuits with more than one unknown

element can be drawn as multiports to show that the admittance func-
tion is of the form of (6.1.1).

b)  Interconnections of several known systems with unknown intercon-
nection gains. A simple example of this is shown in Figure 6.2, with a

plant 13(s) known, and a feedback gain & unknown.

(6.1.3)

r + /F} yp

Figure 6.2 Plant with Unknown Feedback Gain

The closed-loop transfer function, namely P /1 + k P is of the form
of (6.1.1) if P is stable. If P is unstable, then by writing P= Np/ﬁp as
the ratio of two proper stable rational transfer functions, the closed-loop
transfer function is N, / D, + k N, which is of the form (6.1.1).

¢) Classical transfer function models, that is, plants of the form stu-
died in Chapter 2
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m-1 s
Py = —ms T 1O (6.1.4)
ST Bt T+ By

with m < n and «;, 8; unknown, can be stated in terms of the set up of
(6.1.1) by choosing

No(s) = 0

Do(s) = s"/X()

Nis) = sU/NG)  di=1,...,m

Dis) = ~/H/X(@s) j=1,....n (6.1.5)

where X(s) is (any) Hurwitz polynomial of order n.

d)  Systems with some known poles and zeros. Consider the system of
Figure 6.3, with unknown plant, but known actuator and sensor dynam-

ics (with transfer functions Isa(s) and ﬁs(s) respectively).

Actuator Plant Sensor
m-1
s +.%a A y
] Pals) o Om® O Pols) [—>P
sN+B,s" .4y

Figure 6.3 Unknown Plant with Known Actuator and Sensor Dynamics

The overall transfer function is written as

m .
E aisz—l

B(s) = Bs) - = - Byls) (6.1.6)
s"e Y 88!
j=1
which is of the form (6.1.1) by choosing, as above
No(s) = 0
Do(s) = s"/X(s)
Ni(s) = sV Bs)Bs)/N(s)  i=1,...,m
Di(s) = -5 "1/X(s) j=1,...,n (617

where X (s) is (any) Hurwitz polynomial" of order n.
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Identification Scheme

We now return to the general system described by (6.1.1). The
1dentiﬁcation problem is to determine the unknown parameters a;, g;
frqm .mput-output measurements. One could, of course, neglect thé
prior information embedded in the form of the transfer function (6.1.1)
and identify the whole transfer function using one of the procedures of
Chapter 2. However, usage of the particular structure embodied in
(6..1.1) will result in the identification of fewer unknown parameters
with a reduction' of computational requirements and usually faster con:
vergence properties.

6. lI),et F(s), Jp(s) denote the input and output of the plant. Using

A -~ n ~ m ~
Doj, - Nof = ,Zlﬁj Py + 2 a;NiF (6.1.8)
Jj= i=1
Defining the signals
£, i= DoJ,-No?
W, = N7 i=1,..., m
Wmﬂ- = ijp j=1,..., n (619)
and the nominal parameter vector 6*
T
6" i=(ay,..., amBi,..., B,) € R*"*™ (6.1.10)
we may rewrite (6.1.8) as
Wi
a «T '
Z, = 46 (6.1.11)
Wn+m
or, in the time domain
R
z,(t) = 6% w(t) (6.1.12)
where
wl(t) = (Wi(1), ..., Waem(t)) € RO

_ Note the close resemblance between (6.1.12) and the plant parame-
Ferlzatlon‘ of (2.2.14) in Chapter 2. It is easy to verify that in the
instance in which no prior information about the plant is available (case
) above), equation (6.1.12) above is a reformulation of equation
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(2.2.14).

The purpose of the identifier is to produce a recursive estimate 6 @)
of the parameter vector §°. Since r and y, are available, the signals
zy(), w(t) are obtainable through stable filtering of r and y,, up to some
exponentially decaying terms (since 1\7,- and ij are stable, proper,
rational functions). These decaying terms will be neglected for simpli-
city.

In analogy to the expression of the plant equation (6.1.12), we
define the output of the identifier as

zi(t) = 0T()w(t) (6.1.13)
We also define the parameter error

o(t) = 6() - 0" (6.1.14)
and the identifier error

ei(t) = z;(t) - zy(t) (6.1.15)
so that, for the analysis '

et) = ¢T(Ow() (6.1.16)

Equation (6.1.16) is now exactly the same as (2.3.2) of Chapter 2, so that
all the update algorithms and properties of Chapter 2 can be used verba-
tim in this context. Thus, for example, the gradient algorithm

6 = —gew g>0 (6.1.17)
or the least-squares algorithm

§ = —gPew

P = -gPwwTP g>0 (6.1.18)

along with covariance resetting, are appropriate parameter update laws.
As in Chapter 2, the parameter error will converge (exponentially) to
zero for the gradient or the least-squares algorithm with resetting if the
vector w is persistently exciting, i.e. if there exist a;, a3, 6 > 0, such that

104’6 .
al = [ wa)wT(r)dr 2 a1 foralltg=0 (6.1.19)
to
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Frequency Domain Conditions for Parameter Convergence

The techniques of Chapter 2 can be used to give frequency domain con-
ditions on r(¢) to guarantee (6.1.19). To guarantee the upper bound, we
simply assume:

(A1) Boundedness of the Regressor

The plant ﬁ(s) is stable, and the reference signal r is piecewise
continuous and bounded.

As usual, the nontrivial condition comes from the lower bound in
(6.1.19). To relate this condition on w to the frequency content of r, we
will need a new identifiability condition on the transfer function from r
to w, which we will denote

HY, = (N(s), ..., N(s), Dy(s)B(s), . .., Du(s)B(s)) (6.1.20)

(A2) Identifiability
The system is assumed to be identifiable, meaning that for every
choice of n + m distinct frequencies w;, . . ., wy ., the vectors

H,(jw;) e Cn+m (i =1,..., n+m) are linearly indepen-
dent.

Proposition 6.1.1

Under assumptions (A1) and (A2), w is persistently exciting if and only
if r is sufficiently rich of order n + m.

Proof of Proposition 6.1.1 similar to the proof of theorem 2.7.2.

Comments

a)  From (6.1.20) and (6.1.11), it follows that if an input with (n+m)
spectral lines is applied to the system, we would have

GEper)s s 2y (wnam)) = 0 (Hy o), - o) HyrGonam))

diag (7 (jwr), ..., P(jwnsm)) (6.1.21)

The identifiability condition implies that (6.1.21) has a unique solution

for 6°, while proposition 6.1.1 shows that the identifier parameter will
converge to this value.

b) It is difficult to give a more concrete characterization of
identifiability, since the components of H,,(s) are proper stable rational
functions of different orders. An exception is the case of example ¢) and
discussed in Chapter 2. In that case, it was shown that the identifiability
condition holds if the numerator and denominator of the plant transfer
function are coprime polynomials.
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6.1.2 Effect of Unmodeled Dynamics

The foregoing set up used transfer functions of the form (6.1.1) with N,-,

and ﬁj known exactly. In practice, the N, and ij are only known
approximately. In particular, the transfer functions used to approximate

the ]\7,- and ﬁj will generally be low order, proper stable transfer func-
tions (neglecting high-frequency dynamics and replacing near pole-zero
cancellations by exact pole-zero cancellations). Thus, the identifier
model of the plant is of the form '

Noo(s) + 3 a; Ngi (5)
Py(s) = . (6.1.22)
Dao(s) = X B; Dyj (s)
j=1

where ﬁa(s) is a proper stable transfer function, and Naa, Aai , ﬁao, liaj

are approximations of the actual transfer functions ]C’O, N;i, Do, D;. We
will assume that

AN (jo)] = [Ny = N;) ()| < e (6.1.23)
forallw, i=0,..., m

|aD;(jw)| = |(Dg - D;)(jw)| < e (6.1.24)
forallw, j=0,...,n

The identifier uses the form (6.1.22), while the true plant f’(s) is
accurately described by (6.1.1). Consequently, the signals of (6.1.9) are
now replaced by

A -

Eap = Daoj;p_Naaf
wai = ﬁa,’? i=l,...,m
Wamej = Dy, j=1,...,n (6.1.25)

It is important to note that (6.1.12) is still valid, since the signals w, z,
pertain to the true plant. The identifier, however, uses the signals wy; (¢)
so that the identifier output

zi(t) := 0T (t)w, (1) (6.1.26)

where §(¢) is the parameter estimate at time . The parameter update
laws of (6.1.17), (6.1.18) are modified by replacing w by w,, while

eit) = zi(t) - z,(1)
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8T(t)wq (1) - 6* w(t)
dT(Wwa(0) + 6% (wa(2) - w(t))  (6.1.27)

i

Define
Aw(t) = wa(t) - w(r)
Consequently, the gradient algorithm is described by
b= 0= —gew,
= —gw,wle-g0*" Aww, (6.1.28)
and the least-squares algorithm by “
¢ = f = - gPe,w,
= —gPw,wlo-gP8" Aww,
P = —gPw,wlP (6.1.29)

Equations (6.1.28), (6.1.29) have a similar form as without unmodeled
dynamics with the exception of the extra forcing terms

- g0 Aww, in (6.1.28) (6.1.30)

and

- gP* Aww, in (6.1.29) (6.1.31)

Note that Aw, is bounded, since it is the difference between the outputs
of two proper transfer functions with a bounded reference input . Con-
sequently, the terms in (6.1.30) and (6.1.31) are bounded. Thus, if the
systems of (6.1.28) and (6.1.29) are exponentially stable in the absence
of the driving terms, the robustness results of Chapter 5 (specifically
theorem 5.3.1) can be used to guarantee the convergence of the parame-
ter error to a ball around the origin. It is further readily obvious from
the estimates in the statement of the theorem that the size of the ball
goes to zero as Aw shrinks (or, equivalently, the inaccuracy of modeling
decreases).

It therefore remains to give conditions under which the undriven
systems of (6.1.28), (6.1.29) with resetting are exponentially stable. It is
easy to see that this is guaranteed if w, is persistently exciting, i.e., con-
dition (6.1.19) holds with w replaced by w,. It is plausible that if ¢ (the
extent of mismodeling of the Ni, ﬁj) is small enough and w is per-
sistently exciting, then w, is also persistently exciting. This is esta-
blished in the following two lemmas.
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Lemma 6.1.2 Persistency of Excitation under Perturbation

If the signal w(t) e IR"*™ is persistently exciting, i.e. there exist
ay, aj, §>0 such that

to+9d

ayl = fw(r)wT(f)df > a;] foralltg=0  (6.1.32)

lo
and the signal Aw(t) € R"*™ satisfies
' 1

(23] 3
s1}p | Aw(t)| < —6—] (6.1.33)

Then  w + Aw is also persistently exciting.

Proof of Lemma 6.1.2

w+ Aw is persistently exciting if there exist a'|, a’5, 8’ > 0, such that
for all x € IR"*™ of unit norm,

a'y =2 f [XT(W(1)+AW(7))] 2dr > oy (6.1.34)

Let 8’ = 6. The upper bound of the integral in (6.1.34) is automatically
verified, simply because Aw is bounded and w satisfied a similar ine-
quality. For the lower bound, we use the triangle inequality to get

1
to+ o 3

j [xT(w(f) + Aw(r))] zdf
ly

h+s 1 Jrovs %
2| [ Twa)ar | - | [ Taw)dr
1) o
> aff-5" sup |Aw(r)| (6.1.35)

The conclusion now-follows readily from (6.1.33). O

Thus, we see that w, is guaranteed to be persistently exciting, when
w persistently exciting and Aw is sufficiently small. The claim that Aw

is small, when ¢ in (6.1.23), (6.1.24) is small enough, follows from the
next lemma.
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Lemma 6.1.3
If g(s) is a proper, stable, nth order rational function with

corresponding impulse response g(7)
Then  the L, norm of g(¢) can be bounded by

o0
lglli = [le@)dr < 2nsup|&Qe) (6.1.36)
0 w

Proof of Lemma 6.1.3 see Doyle [1984].

From lemma 6.1.3, and the definition of Aw, it is easy to verify
that

|Aw(t)] < 2eNsup |r(7) (6.1.37)

where N is the maximum order of the AN;, AD;. Thus, Aw(?) is small
enough for ¢ small enough, and the persistency of excitation of w guaran-
tees that of w,. Using the estimate (6.1.37) and applying theorem 5.3.1,
we see that the parameter error will converge to a ball of radius of order
€.

6.2 GLOBAL STABILITY OF INDIRECT ADAPTIVE CONTROL
SCHEMES

The indirect approach is a popular technique of adaptive control. First,
a non-adaptive controller is designed parametrically, that is, the con-
troller parameters are written as functions of the plant parameters.
Then, the scheme is made adaptive by replacing the plant parameters in
the design calculation by their estimates at time ¢ obtained from an on-
line identifier. A reason for the popularity of the indirect approach is
the considerable flexibility in the choice of both the controller and the
identifier. Global stability of indirect schemes was shown by several
authors in the discrete time case (Goodwin & Sin [1984], Anderson &
Johnstone [1985], and others). In a continuous time context, Elliott,
Cristi & Das [1985] used random parameter update times for proving
convergence, and Kreisselmeier [1985, 1986] assumed that the parame-
ters lie in a convex set in which no unstable pole-zero cancellations
occur.

In Section 3.3.3, we considered the specific case of a model refer-
ence indirect adaptive control algorithm. We also indicated how it could
be replaced by a pole placement algorithm for nonminimum phase sys-
tems in Section 3.3.5. In this section, we consider more general con-
troller designs, following the approach of Bai & Sastry [1987]. We dis-
cuss a general, indirect adaptive control scheme for a SISO continuous
time system using an identifier in conjunction with an arbitrary
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stabilizing controller. We will show that when the reference input is
sufficiently rich, the input to the identifier is also sufficiently rich to
cause parameter convergence in the identifier. The controller is updated
only when adequate information has been obtained for a ‘“meaningful”
update. Thus, roughly speaking, the adaptive system consists of a fast
parameter identification loop and a slow controller update loop. We will
not need any conditions calling for the parameters to lie in a convex set
or calling for lack of unstable pole-zero cancellations in the identifier.
However, we will need sufficient richness conditions on the input that
we were not assumed previously to establish global stability.

For application of the results, we will specialize our scheme to a
pole placement adaptive controller, as well as to a factorization based
adaptive stabilizer (of a kind that has attracted a great deal of interest in
the literature on non-adaptive, robust control—see, for example,
Vidyasagar [1985]).

6.2.1 Indirect Adaptive Control Scheme

The basic structure of an indirect adaptive controller is shown in Figure
6.4,

Controller

Parameter
Calculation

Identitier [«
+
r
- ? u

Figure 6.4 Basic Structure of an Indirect Adaptive Controller

Q>
Y
6>
y
<
o

The unknown, strictly proper plant is assumed to be described by

. k, fi,(s L
Py = 2 e (6.2.1)
dy(s) st Bys" T+ By

with 7A,(s), c?p(s) monic, coprime polynomials. The degree of c?,, is n,
and that of 71, is less than or equal to n - | (consequently, some of the
«;’s may be zero).

The compensator is a proper, m th order compensator of the form
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- fie(s AmerS™+ 0 +
i) = L) | Amars” 2 (6.2.2)
d.(s) by s+ o+ by

The adaptive scheme proceeds as follows: the identifier obtains an
estimate of the plant parameters. The compensator design (pole place-
ment, model reference, etc.) is performed, assuming that the plant
parameter estimates are the true parameter values (certainty equivalence
principle). We will assume that there exists a unique compensator of the
form (6.2.2) for every value of the plant parameter estimates. The hope

is that, as ¢ - 0o, the identifier identifies the plant correctly, and there-
fore the compensator converges asymptotically to the desired one.

We first design an identifier as in Chapter 2. Define w(t) e R*"
with Laplace transform

n-134

RE/)

(6.2.3)

A 1ty ~ ’

A A A

with X (s), a monic Hurwitz polynomial of the form
s+ Ay$" '+ -+ + A, Then

)

~ - -1 A el
- U su g
WT = [—.’ g Zg
A

yp(t) = 67 w(t) (6.2.4)
where

T

67 = [a,,...,a,,,xl—ﬂ,,...,x,,—ﬂ,,] (6.2.5)
The identifier output is
yi(t) = 0T()yw(e) (6.2.6)

where 6(¢) is the estimate of 6* at time ¢. If ¢(¢) is the parameter error

¢(t) = 6(1)~ 06", then the identifier error e(¢) = y;(¢)-y,(¢) has the
form

ei(1) = ¢T(t)w(1) (6.2.7)

For the identification algorithm, we will use the least-squares with
resetting

é(1)
P(1)

1]

-P()yw(t)e(t) (6.2.8)
—-P(OwW()wWI()P(t) t #¢ (6.2.9)

n

with P(¢*) = koI >0, where ¢; is the sequence of resetting times, to0 be
specified hereafter. It is shown in the Appendix (lemma A6.2.1) that the
parameter error ¢(¢) is bounded, even if y,(¢) may not be. Further,
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¢ (t)— 0 asymptotically, if w(t) is persistently exciting, i.e., if there exist
ay, az, 6>0, such that
fo+48
arl =2 J’ w@r)wl(@)dr 2 a1
to

foralltg =0 (6.2.10)

Note however that the upper bound in (6.2.10) is not needed for
the specific algorithm chosen here. Further, it has been shown in
Chapter 2 that under the condition that 7, ﬁp are coprime polynomials,
w satisfies the lower bound condition (6.2.10) if u is sufficiently rich, i.e.,
if the support of the spectrum of u has at least 2n points (assuming that
u(t) is stationary).

The design of the compensator is based on the plant parameter esti-
mates 6(¢). It would appear intuitive that if 8(¢)—68* as ¢t - co, then
the time-varying compensator will converge to the nominal compensator
and the closed-loop system will be asymptotically stable. Therefore, the
system of Figure 6.4 can be understood as a time-varying linear system
which is asymptotically time-invariant and stable. The following lemma
guarantees the asymptotic stability of the linear time varying system.

Lemma 6.2.1
Consider the time-varying system

X = (A +A4())x (6.2.11)

where 4 is a constant matrix with eigenvalues in the open LHP and
Il AA(¢)]| is a bounded function of ¢ converging to zero as { - co.

Then  (6.2.11) is asymptotically stable, i.e. there exist m, a>0 such
that the state transition matrix ®(¢, 7o) of A + AA(¢) satisfies

I @z, 10)]] < me™*U"  forallt>1

Update Sequence for the Controller
Although the update law (6.2.8), (6.2.9) may be shown to be asymptoti-
cally stable when w satisfies (6.2.10) (in fact only the lower bound), it is
of practical importance to limit the update of the controller to instants
when sufficient new. information has been obtained. This is measured
through the “information matrix”

ti+é

I w(r)wl(r)dr

&4
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Thus, given v >0, we choose the update sequence ¢ by fg = 0, and
ti.1 = t; +68;, where §; satisfies
L+4

8 1= arg‘x;nin f wwldr > I (6.2.12)
13

Then, the compensator parameters are held constant between ¢; and
t;+1. We will assume that the compensator parameters are continuous
functions of §. We may now relate the richness of the reference signal
r(t) in Figure 6.4 to the convergence of the identifier.

Lemma 6.2.2  Convergence of the Identifier

Consider the system of Figure 6.4 with the least-squares update law

(6.2.8), (6.2.9) and resetting times identical to the controller update

times given in (6.2.12).

If the input r is stationary and its spectral support contains at
least 3n + m points,

Then  the identifier parameter error converges to zero exponentially as
t - o0o. More precisely, there exists 0 <¢< 1 such that

| (5)] < & ¢(0)] (6.2.13)

and §; := t;, - {; is a bounded sequence.

Proof of Lemma 6.2.2

The proof uses lemmas which are collected in the Appendix. In particu-
lar, lemma A6.2.1 shows the conclusion (6.2.13) if the sequence §; is
bounded. Thus, we will establish this fact. We proceed by contradic-
tion. If §; is an unbounded sequence, then one of two following possi-
bilities occurs

(a) There exists an i < oo such that §; = op or
(b)) é,>00asi—->o0.

Consider the scenario (a) first. If this happens the system becomes
time invariant after #;, since the controller is not updated. Conse-
quently, one can find the transfer function from r to u to be

. k(8 )A A
. - (L )iy - B (6.2.14)

-~

kphpfi (4 )+ dpd (1) d
where c?c( t;) and A.(t;) are the denominator and numerator of the con-
troller at time ¢;. Using (6.2.14), we may write the transfer function
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from r to w to be

- N - - T
Hos) = —2— |dy, ..., s" ' d, kohy, ..., kphps" ' | (6.2.15)
d,

Since the degree of 7 is (n + m), no more than (n + m) of the spectral
lines of the input can correspond to zeros of the numerator polynomial.
Even in this (worst-case) situation, we see from the arguments of
Chapter 2 that w is persistently exciting. This fact, however, contradicts
the assumption that §; = oo.

Now, consider scenario (b). First, notice that when the plant
parameters are known, the closed loop system is time-invariant and
stable so that we may write the equation relating r(¢) to the signal w,,(?)
{(wn(t) corresponds to w(¢) in the case when ¢ (¢) = 0, as in Chapter 3)

i

Zm Az, + br

Wn = Cz,
where A, C are constant matrices, b is a constant vector and A4 is stable.

For the adaptive control situation, ¢ () # 0, but we may still write the
following equation relating r(¢) to w(¢)

z = (A+AA())z + (b+Ab(D))r

w = (C+AC(t))z
where AA(¢),AC(t),Ab(t) are continuous functions of ¢(¢) and
AA(t),AC(t) and Ab(t)—0 as ¢(t)— 0. If scenario (b) happens, we
still have that ¢(¢)—>0 as { - from lemma A6.2.1. Further, from
lemma A6.2.2 it follows that w,,(¢) approaches w(¢) for ¢ large enough.

Then the persistency of excitation of w(¢) follows as a consequence of
the result of lemma A6.2.2 and the fact that w,,(¢) is persistently excit-

ing. This, however, contradicts the hypothesis that 5, - 0o as i - 00.
o

Theorem 6.2.3 Asymptotic Stability of the Indirect Adaptive System

Consider the system of Figure 6.4, with the plant and compensator as in
lemma 6.2.2.

If the inpuf r is stationary and its spectral support contains at
least 3n + m points

Then  the adaptive system is asymptotically stable.
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Proof of Theorem 6.2.3 follows readily from lemmas 6.2.1 and 6.2.2.

6.2.2 Indirect Adaptive Pole Placement

Pole placement is easily described in the context of Figure 6.4. The
compensator C is chosen so that the closed-loop poles lie at the zeros of
a given characteristic polynomial (ic, (s), typically of degree (2n - 1). In
other words, A, d, need to be found to satisfy

kyff, + d.d, = dg (6.2.16)

When 7, c?,, are coprime, equation (6.2.16) may be solved (see lemma
A6.2.3 in the Appendix) for any arbitrary d, of degree (2n ~ 1), with
Fies c?c each of order n - 1.

When the plant is unknown, the "adaptive” pole placement scheme

is mechanized by using the estimates 71,(¢; ), c;’p( t;) of the numerator and
denominator polynomials. Using lemma A6.2.3 again, it is easy to ver-

ify that if k,(¢;) Ay(t), t?,,( t;) are coprime, there exist unique #.(¢; ) and
d.(t;) of order n - 1 such that

kp(t:) At ) Ap(t:) + do(t)dy(t;) = dg (6.2.17)

The estimates for k,(¢;) A,(¢;) and cf’,,( t;) follow from the plant parame-
ter estimates 6(¢) of the identifier. In analogy to the plant parameter
vector 6, we have the parameter vector of the compensator (cf. (6.2.2)
with m = n-1)

0.(t) = [bo(t),..., bo(t), aolt), . ... a,,(z)] (6.2.18)

As usual, 67 has the interpretation of being the nominal compensator
parameter vector. Further, to guarantee that k,(#;) ,(¢;) and d,(¢;) are

coprime at the instants f;, we need to modify the definitions of the
update times. Let

tiv) = L+ (6219)
where §; is the smallest real number satisfying
4+ 8
[ wwldt = 41 (6.2.20)
4
ky(1;) A,(t; +6;) and d,(t; +8;) are coprime (6.2.21)

More precisely (6.2.21) is satisfied by guaranteeing that the smallest
singular value of the matrix in lemma A6.2.3 of the Appendix—
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measuring the coprimeness of k,(¢; + 6;) Ay(1; +§;), Jp( t; +6; )—exceeds
anumbero > 0. O

Theorem 6.2.4 Asymptotic Stability of the Adaptive Pole Placement
Scheme

Consider the adaptive pole placement scheme, with the least squares
identifier of (6.2.8)-(6.2.9) and the update sequence ¢; defined by
(6.2.19)-(6.2.21).

If the input r(¢) is stationary and its spectral support contains at
least 4n — 1 points

Then  all signals in the loop are bounded and the characteristic poly-
nomial of the closed loop system tends to d(s). Moreover,

| 6.(t)-6:| — 0 exponentially.

Proof of Theorem 6.2.4

The first half of the theorem follows from lemmas 6.2.1, 6.2.2—a slight
modification of the arguments of lemma 6.2.2 is needed to account for
the new condition (6.2.21) in the update time, but this is easy because of

the convergence of the identifier and the coprimeness of the true 7, d,,.
For the second half, we see from lemma A6.2.3 in the Appendix that

A@())0.(t;) = d (6.2.22)

with d the vector of coefficients of the polynomial c?cl. It foliows from
lemma A6.2.3 in the Appendix that there is an m > 0 such that

| A@()) =A@ < m| 6(z;)-067
Further, subtracting (6.2.22) from
A@%0; = d (6.2.23)
we see that
[46)) = 46 ] 6.(4) = 4@ @1)- )
Thus
P O:(6)=6:) < ml| A1 @) | 6(5)-06"] | 6:(1;)] (6.2.24)
Since | 6.(¢;)| is bounded (by (6.2.21)), we get that
| 0.(4) -0z < my|"6(;)-6"] (6.2.25)

for some m,. Since 6(¢; ) converges to 8* exponentially, so does 8,(¢;) to
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6.2.3 Indirect Adaptive Stabilization—The Factorization Approach

The Factorization Approach to Controller Design  _

We will briefly review the factorization approach to controller design
(the non-adaptive version). Consider the controller structure of Figure
6.5.

U2

u [:] ] Y
! Ll e P 2.l e 2 .

Figure 6.5 Standard One Degree of Freedom Controller

The plant P is as defined in (6.2.1) and the compensator C asin (6.2.2).
The transfer function relating e, e, to u;, u, is given by

i ! [1 "P] (6.2.26)
" T.pe L6 *

The system of Figure 6.5 is BIBO stable if and only if each of the four
elements of (6.2.26) is stable, i.e., belongs to R, the ring of proper,

stable, rational functions. The ring R is a more convenient ring than is
the ring of polynomials for several reasons (see for example, Vidyasagar
[1985]))—including the study of the robustness properties of the closed

loop systems. We assumed that P and € are factored coprimely in R
(not uniquely!) as

P(s) = Ny(s)D; '(s)
C(s) = D Ys)N(s) (6.2.27)

From Vidyasagar [1985] it follows that the system of Figure 6.5 is BIBO
stable if and only if (N,N,+D,D.)~"! belongs to R, or, equivalently,

N N + D D is a unimodular element of R . Without loss of generality,
we can state that a compensator stabilizes the system of Figure 6.5 if
and only if
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NN, + D,D, = 1 (6.2.28)

Equation (6.2.28) parameterizes all stabilizing compensators. We
will be interested in a parameterization of all solutions of (6.2.28) in

terms of the coefficients of N D For this purpose, let (4,, b, ¢, bea
minimal realization of P(s) If S eR" and [ e R” are chosen to stabil-

ize Ay := A, - b,fT and A4, := A, - Ic] (such a choice is possible by the

minimality of the realization of A4,, b,, ¢]), then, it may be shown (see
Vidyasagar [1985]) that a right coprime fraction of P is given by

N, = c}(sI - Ay)~ ‘b,, (6.2.29)
D, = 1-cl(sT-4,)" (6.2.30)
and further that all solutions of (6.2.28) may be written as
D, = 1+¢](sI = Ap)~"1 = Q(s)cT(sT - App)~'b, (6.2.31)
Re = ST =4p)™ 1+ 06) 1= /7 (6T - 4,7, ] (6.2.32)

with Q(s) € R an arbitrary element chosen to meet other performance
criteria (such as minimization of the disturbance to output map, obtain-
ing the desired closed loop transfer function, optimal desensitization to
unmodeled dynamics, etc.).

The optimal choice of Q(s) depends on the plant parameters.
However, such a choice of Q(s) may not be unique or depend continu-
ously on plant parameters. The optimal choice of Q(s) is the topic of
the so-called H® optimal control systems design methodology. In this
chapter, we will not concern ourselves with anything more than stabiliza-

tion, and use a fixed Q(s) rather than one whose calculation depends on
the current estimate of plant parameters. For simplicity we will, in fact,

fix Q(s) = 0 in the adaptive stabilization which follows.

Adaptive Stabilization Using the Factorization Approach

The objective is to design the compensator C‘(s) adaptively based on the
estimate § of the plant parameters so that the closed loop system is
asymptotically stable with all signals bounded. Set u,(¢) = 0

The identifier and compensator update sequence {t; ) are specified
in (6.2.19)-(6.2.21). The only difficulty in mechanizing the n th order
compensator of (6.2.31) and (6.2.32) (with é(s) = 0) lies in calculating
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S(t), 1(t;) e R" to stabilize Ay(t; ), the estimate of A4, based on the
current plant parameter estimate. To that effect, we consider the con-
trollable form and observable form realizations of the plant estimate

0 1 0 0

A(4) = - - 1 b, = ; (6.2.33)
=Bi(4) —Ba¢) -Ba(t;) 1
() = [ay(6) ax(ly) -+ an(ti)]

and

000 -Bi(¢) ay(t;)
I 0 . . . N

Aty = |- - - by(t;) = : (6.2.34)
0 - 1 =B,(4) ay(t;)

&r(ty = [0 - 01]

Let the transformation matrix M(¢;) relate the realization (6.2.33) to
(6.2.34)

/,ip(l,') = Al([[)ApAJ(ti)_l
Bp([,‘) = M(ti)bp(ti)
&) = M)

Note that M(¢;) is the only calculation that needs to be performed.
Now f(¢;) and /(¢;) are easily read off. Indeed, consider any stable
polynomial s" + p,s" "' + -+ + p,. Then it is easy to see that

STy [=p1+B1(t), ..., =pa+Ba(1)]T

and

() = M7\ [-p1+B81(4), - =P+ Ba(1)]T (6.2.35)

Therefore A,(t;)-b,/T(4;) and A4,(4)-1(t;)ck(t;) have their eigen-
values at the zeros of s"+p,s" '+ -+ +p,. The compensator of
(6.2.31), (6.2.32) with Q(s) = 0 can be made adaptive by choosing C(¢;)

= D, '(4;) N(1;) with
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Ne(ti) = ST G = Ay (1)) V(1) (6.2.36)
De(t;) = 1+l ()T - Ay (1))~ (1) (6.2.37)

Then, as before we have the following theorem:

Theorem 6.2.5 Asymptotic Stability of the Adaptive Identifier Using the
Factorization Approach

Consider the set up of Figure 6.5, with the least squares identifier of
(6.2.8), (6.2.9), the update sequence {¢;} of (6.2.19)~(6.2.21), and the
compensator of (6.2.36), (6.2.37).

If the input is stationary and its spectral support is not concen-
trated on k£ < 4n points,

Then  the adaptive system is asymptotically stable.
Proof of Theorem 6.2.5 follows as the proof of theorem 6.2.4.

6.3 MULTIVARIABLE ADAPTIVE CONTROL

6.3.1 Introduction

The extension of adaptive control algorithms for single-input single-
output systems (SISO) to multi-input multi-output systems (MIMO) is
far from trivial. Indeed, transfer function properties which are easily
established for SISO systems are much more complex for MIMO sys-
tems. The issue of the parameterization of the adaptive controllers
becomes a dominant problem. Several MIMO adaptive control algo-
rithms were proposed based on the model reference approach (Singh &
Narendra [1982], Elliott & Wolovich [1982], Goodwin & Long [1980],
Johansson [1987]), the pole placement approach (Prager & Wellstead
[1981], Elliot, Wolovich & Das [1984]), and quadratic optimization
approaches (Borisson [1979], Koivo [1980]). See also the review/survey
papers by Dugard & Dion [1985] and Elliott & Wolovich [1984].

The understanding of parameterization issues benefited significantly
from progress in the theory of nonadaptive MIMO control theory. In
Section 6.3.2, we briefly review some basic results. More details may be
found in Kailath [1980], Callier & Desoer [1984], and Vidyasagar
(1985]. These results will help us to establish the parameterization of
MIMO adaptive controllers in Section 6.3.3. Once the parameterization
is established, the design of adaptive schemes will follow in a more
straightforward manner from SISO theory (Section 6.3.4).

As previously, we will concentrate our discussion on a model reference
adaptive control scheme and follow an approach parallel to that of
Chapter 3. Alternate adaptive control schemes may be found in the
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references just mentioned. We will say very little about the dynamic
properties of MIMO adaptive control systems. Indeed, this topic is not
well understood so far (even less than for SISO systems!).

6.3.2 Preliminaries

6.3.2.1 Factorization of Transfer Function Matrices

Right and Left Fractions

Consider a square transfer function matrix P(s), with p rows and p
columns, whose elements are rational functions of s with real

coefficients. The set of such matrices is denoted P(s) € IR?*?(s). A
rational transfer function is expressed as the ratio of two polynomials in
s. Similarly, a rational transfer function matrix may be represented as
the ratio of two polynomial matrices. The set of polynomial matrices of

dimension p x p is denoted IR? *?[s] (n?te tAhe slight difference in nota-
tion). AA pair of polynomial matrices (Ng, Dg) is called a right fraction
(rf) of P(s) € RP*P(s) if

o Ng, Dr € RP*P[s]

+ Dy nonsingular, i.e., det(Dg(s)) #0 for almost all s.

« P = NgDg'!
SAimilarly, a pair (Dp,Ny) is called a lefi fraction (Lf) of
P(s) e RP*P(s) if

e Ny, Dy e RP*P[s)

. 15L nonsingular, i.e. det (15L(s));é0 for almost all s

« P=D['N,

Given a right fract{on (NR’. ﬁR), another right fraction may be
obtained by mu}tiplying Ng and Dy on the right by a nonsingular poly-
nomial matrix R(s) € R?*?[s], i.e.

Ng, Dg tf.of P => Ng = NgR rf.of P
R nonsingular ﬁR, = ﬁRﬁ

The matrix R is called a common right divisor of NR, and ﬁR,- It is
called the greatest common right divisor (gcrd) of Ng, and Dy, if any
other common right divisor of Ng, and Dg, is also a common right divi-

sor of R. In fact, “the” gerd is not unique, but all gerd’s are equivalent
in a sense to be defined hereafter.
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Similar definitions follow for a left fraction (ﬁL, NL). Given
(Dr, Np) a left fraction of P(s) and a nonsingular matrix L, (LD;, LN;)

is also a left fraction of 13(5). Greatest common left divisors are defined
by making the appropriate transpositions.

Right and Left Coprime Fractions—Poles and Zeros

A polynomial matrix ﬁR(s) is called unimodular if its inverse is a poly-
nomial matrix. A necessary and sufficient condition is that det ﬁR(s) is
a real number different from 0. Clearly, a unimodular matrix is non-
singular. Further, multiplying a polynomial matrix by a unimodular
matrix does not affect its rank or the degree of its determinant.

Two matrices R, and R, are said to be right equivalent if there
exists a unimodular matrix R such that Rz = RyR. Given a pair

(NR, DR) and a gerd R,, the matrix Rz = RlR is also a gerd if R is uni-
modular. In fact, it may be shown that all gcrd’s are so related, that is,
all gcrds are right equivalent. Extracting the gerd R of a right fraction
(NR‘, DR )} is pretty much like extractmg common factors m a scalar
transfer function. The new pair (NR = NRIR , DR = DR, “1y is also
a right fraction so that P = zN"RlDRj’ = ]VRﬁR‘ !, Note that the gerd’s of

(NR, 5R) are unimodular. In general, two matrices (NR, ﬁR) are called
right coprime if their gerd is unimodular. It may be shown that for all

f’(s) e IRP*P(s), there exists a right coprime fraction of 13(s ); that is,
. NR, 15R e IR?*P[s] right coprime
. ﬁR nonsingular
« P = NgDg!
In analogy to the SISO case, the poles and zeros of P are defined as
. pisapoleof P ifdet(ﬁR(p)) =0
o zisazeroof P if det(Ng(z)) = 0
where (Ng, Dg) is a right coprime fraction of P. Similarly, n = order of

the system = adet(ﬁR(s)). It may be shown that these definitions
correspond to the similar definitions for a minimal state-space realiza-

tion of a proper ﬁ(s—).

Similar definitions are found for left coprime fractions. It follows
that rcf and Icf of a plant P must satisfy, det (ﬁR(s)) = det (ﬁL(s)) and
det (NR(S)) = det (1\7L(s)), except for a constant real factor.
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Properness, Column Reduced Matrices

We restrict our attention to proper and strictly proper transfer function
matrices, defined as follows:

lim 13(s) exists
§S— Q0

lim P(s) = 0

S—=>Q0

P(s) € RE*M(s) if
P(s) e RE*P(s) if
Consider a right fraction (NR, 5R), and define the column degrees as
6cj(ﬁR) = max [8(Dp )ij |
The following fact is easily established:
P(s) € REXX(s) = 3,(Nz) < d(Dp)

P(s) € REXP(s) => 8,(Ng) < 0.(Dg)

The converse is true if we introduce the concept of column reduced
matrices. First define the highest column degree coefficient matrix Dy,

(Dye)ij = coeflicient of the term of degree 0Cj(§R) in (Dg);

A matrix is called column reduced (also column proper) if Dy, is non-

singular. If (NR,ISR) is a right fraction of 13(s) and 15R is column
reduced, then

3, (Nr) < 8,(Dg) <> P(s) ¢ RS *#(s)
3j(NR) < 8,(Dg) <> P(s) e RE*H(s)

If (NR,ER) is a right coprime fraction of 13(s), and ﬁR is column
reduced, we call

B = aC,(DR) 1= controllability indices of P

m max (u;) := controllability index ofl6
J

It is a remarkable fact that {u;} is invariant (see Kailath [1980]). In
other words, the controllability indices are the same (modulo permuta-

tions) for all r.c.f. (](’R, ﬁR) with ﬁR column reduced. Note also that

»
n = order of the system = ) yu;
i=1
It may also be shown that the definition of controllability indices
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correspond to the alternate definition for a minimal state-space realiza-
tion.

Given a matrix 13(5) e IRO*P(s) or 13(s) e IREP(s), it is always
possible to find a rcf (Ng, Dg) such that Dy is column reduced. The
procedure is somewhat lengthy and is discussed in Kailath [1980). The
first step is to obtain a right coprime fraction (using a Hermite row form
decomposition), and the second step is to reduce the matrix to a column

reduced form, multiplying further on the right by some appropriately
chosen unimodular matrix.

Properness, Row Reduced Matrices

Similar facts and definitions hold for left fractions and are briefly sum-
marized. The highest row degree coefficient matrix Dy, is defined as:

(Dpy)ij = coefficient of the term of degree ar,(ﬁL ) in (DAL),]
where a,i(ﬁ;_) = max (0(Dl),,) are the row degrees of 151. .
j

The matrix DL is called row reduced if Dy, is nonsingular. If (ﬁL, NL) is
a left fraction of P(s), and D, is row reduced, then

3i(NL) < 8,(D) <> P(s) e RL*¥(s)
0i(N) < 8,(Dy) <> P(s) e RE*H(s)

When (bL, NL) is a left coprime fraction of 13(5), with ﬁL row reduced,
we define
v, = 6,,»(13L) = observability indices of P
v = max (v;) := observability index of P
!

The set of observability indices is invariant. They are different from the
controllability indices, although related by

14 p
n = systemorder = X = ) p
i=t jo

Polynomial Matrix Division

Consider, first, scalar polynomials. Given two polynomials 7 and d, the
standard division algorithm provides § and 7 such that

A= 4d +r of < od
This procedure is equivalent to separating the strictly proper and not
strictly proper parts of a transfer function:
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P

=g+ g¢ polynomial , strictly proper

NN

NN
&,l ~>

From this observation, the following proposition is obtained in the mul-
tivariable case.
Proposition 6.3.1 Polynomial Matrix Division
Let NR, ﬁR, NL, 15L € IRP*P[s] with 5R, 15L nonsingular. Lo&-ég—b&
columin.reduced-and-Py-pe-sowredueed:
Then  There exists QR, RR, QL, RL € IR?*?[s] such that

Ng = QrDr + Ry 3;(Rp) < aCj(DR)

Ny = DO + Ry 8,4(Ry) < 8,(Dy)

i

Proof of Proposition 6.3.1

The elements of NgDg' are rational functions of s. Divide each
numerator by its denominator and call the matrix of quotients Qp.

Therefore NxDg! = Or +SR where Sz € R{P(s). Let Rg = SrDr,
ie. ‘§R = ﬁRER_ 1.
Since SRDR = NR ~ QRDR, RR is a polynomial matrix. Further, SR

being strictly proper aad-DR-colum.n.mdmed, the column degrees of RR

must be strictly less than those of DR. A similar proof establishes the
fact for left fractions. O

6.3.2.2 Interactor Matrix and Hermite Form
Interactor Matrix
In Chapter 3, we observed that SISO model reference adaptive control
requires the knowledge of the relative degree of the transfer function
ﬁ(s)‘ The extension of the concept of relative degree to transfer func-
tion matrices is not trivial and must take into account the high-
frequency interactions between different inputs and outputs. The con-
cept of an interactor matrix follows in a natural way, by taking the fol-
lowing approach. Note that the knowledge of the relative degree of a
scalar transfer function P(s) e IR, ,(s) is equivalent to the knowledge
of a monic polynomial §(s) such that

lim £(s)P(s) = k, # 0

500

Then, the relative degree of f’(s) is equal to the degree of § (s). The
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scalar k, was earlier called the high-frequency gain of the plant P.

The high-frequency behavior of MIMO systems is similarly deter-
mined by a polynomial matrix such that

lim g(s)f’(s) = K, nonsingular
S—C0

We must assume here that Is(s) is itself nonsingular. The matrix é (s)is
not unique, unless its structure is somewhat restricted. It is shown in

Wolovich & Falb [1976] that there exists a unique matrix E(s) satisfying
the following conditions.

Definition Interactor Matrix

The interactor matrix of a nonsingular plant P(s) e IRO*P(s) is the
unique matrix { ¢ IR? "’@Bsuch that

lim £(s)P(s)

K, nonsingular

5 -+ Q0O
E(s) = 2(s)A(s)
where

o A(s) = diag (s")
It 0 0 - 0]
&2](5) 1 0 0
© 2(5) = [Fuls) Gals) 1 0
.&pl(s) . . . IJ

+ any polynomial ¢;,(s) is divisible by s (or is zero)

The matrix K, is called the high frequency gain of the plant ﬁ(s). The
integers r; extend the notion of the relative degree r of an SISO transfer
function. The matrix Z(s), which becomes | in the SISO case, describes

the high-frequency interconnections between different inputs and out-
puts.

Hermite Normal Form

Another approach, leading to an equivalent definition, is found in Morse
[1976]. For this, one notes that proper rational functions of s form a
ring. A division algorithm may also be defined, where the gauge of an

element is its relative degree. Therefore, P(s) is a matrix whose
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elements belong to a principal ideal domain, and may be factored as

P(s) = H(s) - Us) H,U e Ry*(s)

where H is the Hermite column form of P. The Hermite column form

of H is a lower triangular matrix, such that the elements below the diag-
onal are either zero, or have relative degree strictly less than the diago-

nal element on the same row. The matrix U is unimodular in RS *P(s),

that is, its inverse is a proper rational matrix. The unimodularity of U
is equivalent to

lim 0(5) = K, nonsingular
6 §—=>Q0

Morse [1979] showed that, with some slight modifications, one could
uniquely define the Hermite normal form as follows
Definition Hermite Normal Form

The Hermite normal form of a nonsingular plant ﬁ(s) e IR.*P(s) is the

unique matrix H ¢ IR)*P(s) such that

P (s) = fl(s)- 0(5) U unimodular in RS *#(s)

I
(s+a)"

ﬁzx(s) I
(s+a)?!

(s+a)?

alt
i

I
(s+a)*

where 65,,-(5) < r; -1 and q is arbitrary, but fixed a priori.

As shown in the following proposition, the interactor matrix and
the Hermite normal form are completely equivalent.

Proposition 6.3.2  Interactor Matrix and Hermite Normal Form
Equivalence

Let g(s) be the interactor matrix of 13(s) e IRS*P(s). Let H (s) be the
Hermite normal form of P(s) for a = 0.

Then £(s) = H ™ '(s)
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Proof of Proposition 6.3.2
We let g‘ = H ' and show that it satisfies the conditions in the definition

of the interactor matrix. First, note that 5‘13 =H 'P = 0. Since U is

unimodular, lim £ P = K, nonsingular. Next, decompose
5S> 00

0 -0 10 - 0
. 0 s 2. . shy(s) 1 - 0

[

0 0 - s [shys) -

Clearly, A so defined satisfies the required properties, and  is a lower

triangular matrix with I’s on the diagonal. The off-diagonal terms
satisfy

G2(s) = —shy(s)

s(h31(s) = Raa(s) A3 (s))

~ sh 3(s)

a31(s)

I

732(5)

so that i(s) also satisfies the required conditions. [J

Hermite Form and Model Reference Control

’I_‘he significance of the Hermite normal form in model reference adap-
tive cqntrol may be understood from the following discussion. An arbi-
trary linear time-invariant (LTI) controller may be represented as

u = Cr(r) + éFB(.Vp)

where C‘,.-F is a.feedforward controller and éra is a feedback controller,
so that the closed-loop transfer function is given by

(I - PCr)~ ' PCry (u)
ﬁ(l_éFBﬁ)-léFF(u)

Vp

[
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= HU(I - CppP)™" Crp(u)
'I:he transfer function is equal to the reference model transfer function
M if
M = HU(I - CpgP) ' Crr
Assume now that the plant is strictly proper, and restrict the controller to

be proper. Then, the transfer function U(I - CpgP)~ 'Crp is proper. In
other words, the reference model must be the product of the plant’s Her-
mite form times an (arbitrary) proper transfer function. For SISO sys-
tems, this is equivalent to saying that a proper compensator cannot
reduce the relative degree of a strictly proper plant.

6.3.3 Model Reference Adaptive Control—Controller Structure
With the foregoing preliminaries, the assumptions required for multi-
input multi-output (MIMO) model reference adaptive control will look
fairly similar to the assumptions in the SISO case.
Assumptions
(A1) Plant Assumptions
The plant is a strictly proper MIMO LTI system, described by a
square, nonsingular, transfer function matrix

P = HU e RLA(s)
where H is a stable Hermite normal form of 13, obtained by set-
ting @ > 0. H is assumed known. The plant is minimum
phase, and the observability index v is known (an upper bound
on the order of the system is, therefore, vp).

(A2) Reference Model Assumptions
The reference model is described by

-

M = HM, e R{*H(s)
where MO is a proper, stable transfer function matrix and H is
the Hermite normal form of the plant.

(A3) Reference Input Assumptions

The reference input r(-) e IR™ is piecewise continuous and
bounded on R ,.

Controller Structure

First, note that all the dynamics of MO may be realized by prefiltering
the reference input r. Therefore, we define
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Fo= M(r)
so that
Ym = ﬁ(F) (631)

In this manner, the model reference adaptive control problem is replaced

by a problem where the reference model M is equal to the Hermite nor-
mal form of the plant.

The controller structure used for multivariable adaptive control is
similar to the SISO structure, provided that adequate transpositions are

made. Let X (s) be an arbitrary, monic, Hurwitz polynomial of degree

v~ 1 (where v is the observability index of 13). Define f&(s) e IRP*P(s)
such that

A(s) = diag [X(s)] (6.3.2)
The controller is represented in Figure 6.6.

- 7 = y
—MsFE=>1 ¢, Y P(s) ——? P

=1

N
A (s)Cts)

/N

- A
A1)

Figure 6.6 MIMO Controller Structure

It is defined by

F

Mo(r)
CoF + A7) C(s)u) + AU (s)D(s)(¥p) (6.3.3)

where Cy € IRP*?, C(s) D(s) € lRpo(S) By the foregoing choice of
A, A"'C=CA"', and A™'D =DA~'. Further, let oC <v-2
D <y-1 (where C denotes the maximum degree of all elements of
C). )

Now, consider a right coprime fraction (NR, ﬁR) of P. Therefore

Dr(x) = u ¥y = Ng(x) (6.3.4)

u

joi)

where x is a pseudo-state of P. Combining with the expression of the
controller
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Dr(x) = Cof + A 'Cw) + A 'D(y,) (6.3.5)

so that
f&D};x = f\COF + éﬁkx + 5NRx (6.3.6)
[(A -C)Dg - DNglx = ACoF (6.3.7)

Therefore, the output y, is given by
¥, = Ngl(A —C)Dg - DNgl~'ACy(F) (6.3.8)

As in the SISO case, this leads us to a proposition guaranteeing that
there exists a nominal controller of prescribed degree such that the

closed-loop transfer function matches the reference model (f} ) transfer
function.

Proposition 6.3.3 MIMO Matching Equality

There exist C, C*, D* such that the transfer function from >y, is H.

Proof of Proposition 6.3.3
The transfer function from 7 to y, is H if and only if the following
equality is satisfied

Nrl(A -C*Dgr- D*Ng]l 'ACS = H (6.3.9)

Since H ™! is a polynomial matrix, the foregoing equality may be
transformed into a polynomial matrix equality, reminiscent of the
matching equality of Chapter 3

(A-C*)Dg- D*Ng = ACLH 'Ng (6.3.10)

First, we determine Cj. Multiply both sides by ﬁR" on the right
and A~ ! on the left. Then

(I-A'CY-A"'D*NgDg' = C{H "Ny Dg'! (6.3.11)
Taking the limit as s - oo

I = C}K, - C5 = K, ! (6.3.12)

(4
The polynomial matrices C*, D* are obtained almost as in the SISO
case. Let (D;, N;) be a left coprime fraction of P, with D; sew
’reduaod. Divide fop‘ VL~ on the right by ﬁL , S0 that

tolvin RéouceD (Iuln A MaATRIY Fenerion
PESCAIPTION AwAys €XSTS CCF BEGRELL’ S,

W R.6vi0ORT , "A NEw v YT cAvOwniCAL
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AR, 'H™' = O,D; + R, (6.3.13)
where ac,.(éL) < ac,(ﬁL) < v. Then, let
D* = -R, = 0, D, - AKz'H™!
C*' = A-Q, N, (6.3.14)

Since ﬁL 1\7R = NL ﬁR , it is easy to show that the given Cg, C*, D" solve
the matching equality. Since 3.,(Dr) <, aD* = a(ﬁL) <v-1. On the
other hand
lim (1 -A"'C*) = lim(A"'D*P+K,'"H 'P) =1 (6.3.15)
§—=Q0 s— 00

so that A~ 'C* is strictly proper and C* <»-2. O

State-Space Representation
A state-space representation is obtained by defining the matrices C, , . . .

) Cvfl’DO’Dl ..... D,,_] e IR?*? such that
N N v-2
COHAs) = OLreE v
A A
A s 1 s sv?
DA™ '(s) := Do+ D, -)-:— + sz + -+ D,_ | — (6.3.16)
A

Consequently, the vectors w{") and w{? are defined by

Si
Wi = S )

i-1
w? = SX () i=1..v-1 (63.17)

The regressor vector w is defined as

— T
wl o= (FTow o WL pE wPT L, w®l) e RPXPP (6.3.18)

and the matrix of controller parameters is
e’ := (Co, Cy,..., C,_,Do,Dy,..., D,_|) € RP*2P (6.3.19)
so that the control input is given by

u =0"we R (6.3.20)

The controller structure is represented in Figure 6.7. By letting the con-
troller parameter 0, i.e., Cy, . . ., C,_y,Dqy, ..., D,_ vary with time,
the scheme will be made adaptive. We define the parameter error

FOLM FORL MULTIVARIAHLE SYSTEWS, 1 6EC

TRANS, o0y AvTon. Cowrrol .
e €40 .Ch¢ " 1aa¢ ) VoL 1,
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f = ¥p
= M (s Pls) \L
AUXILIARY
SIGNAL
GENERATOR
wﬁ(a)
1 00
{0 )<
i=1..,v -1
Figure 6.7 MIMO Controller Structure—Adaptive Form
(1) := O(1)-0" € RP*¥P (6.3.21)
and
éT = (C],..., Cp_|,DQ,D1 ..... Du«l)
W“':= WiV wih, va wi@ L w@))
$:=0-0" (6.3.22)

6.3.4 Model Reference Adaptive Control—Input Error Scheme
For simplicity in the following derivations, we make the following
assumption
(Ad) High Frequency Gain Assumption
The high-frequency gain matrix K|, is known.

Consequently, we let

Cy = Gy = Kp-l
u = CiF + 07w (6.3.23)

and we look for an update law for o).
Consider the matching equality
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(A-C"Dr-D"Np = ACLH "Ny (6.3.24)

and multiply both sides by A~' on the left and 13R"’ on the right so that

I -(A'CY-(A'DYP = CLH'P (6.3.25)
Now, define
L(s) := diag [[(s)] € R?*P(s) (6.3.26)

where [ (s) is a monic, Hurwitz polynomial such that 8/ = 6(1:1 1 (the

maximum degree of all elements of H ™' ). Since A and L are given by
(6.3.2), (6.3.26), they commute with any matrix. Multiplying both sides

of (6.3.25) by L' and applying both transfer function matrices to u
leads to

L") C3HL) (y,) + i"(é'ﬁ"'(tt)+ﬁ‘&"‘(yp))

CoHL) " o)+ L7Y(8" )

Co(HLY ' (y,) + 0" LY(w) (6.3.27)
As in the SISO case, we define

vl = (HL)-'yT L~ Y(#T))

v = LY (wT)
e; = 0Tv-L () (6.3.28)
so that, using (6.3.27)
e, = &y
= 3y (6.3.29)

where the last equality follows because we assumed that K, is known,

that is, Cy = Cjy. The error equation is a linear equation, but a mul-

tivariable one, with e; e R?, &7 ¢ IR?*®-"_ However, standard
update laws are easily extended to the multivariable case, with similar
properties. For example, the normalized gradient algorithm for (6.3.29)
becomes )

- Fezr

0 = -g—F= g,v>0 (6.3.30)

L4477y

This equation may be obtained by considering each component of e,,
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forming p scalar error equations, and collecting the standard SISO
update laws. Similarly, a least-squares algorithm may also be defined.

The scheme may also be extended to the unknown high-frequency
gain case. However, some procedure must be devised to prevent Cg
from becoming singular (cf. ¢y # 0 in SISO),

6.3.5 Alternate Schemes

The multivariable input error scheme presented here is equivalent to the
scheme presented by Elliott & Wolovich [1982]. In discrete time, a
similar scheme is obtained by Goodwin & Long [1980]. An output error
version of the model reference adaptive control scheme is found in
Singh & Narendra [1984].

It is fairly straight forward to derive an indirect scheme, based on
the solution of the matching equality given in the proof of proposition
6.3.3. An interesting contribution of the proposition is to show that the
solution of the matching equality requires only one polynomial matrix
division. This is to be contrasted with the situation for pole placement,
where the general Diophantine equation needs to be solved. In fact, the
matrix polynomial division itself is simpler than it looks at first, and
may be calculated without matrix polynomial inversion (see Wolovich
[1984)).

A possible advantage of the indirect approach is that the interactor
matrix may be estimated on-line (Elliott & Wolovich [1984]). Indeed,
the requirement of the knowledge of the Hermite form may be too much

to ask for, unless A is diagonal (cf. Singh & Narendra [1982], [1984]).

When H is not diagonal, the off-diagonal elements depend on the unk-
nown plant parameters.

The model reference adaptive control objective with M =H is
somewhat restrictive: Indeed, all desired dynamics are generated by
prefiltering the input signal. In continuous time, all zeros are cancelled

by poles, and the remaining poles are defined by H. In discrete time,
the remaining poles are all at the origin (d-step ahead control). This is
not very desirable for implementation, as discussed in Chapter 3. In the
SISO case, a more adequate scheme was presented such that the internal
dynamics of the closed-loop system are actually those of the reference
model.

Stability proofs for MIMO adaptive control follow similar paths as
for SISO (Goodwin & Long [1980], Singh & Narendra [1982]). Conver-
gence properties have not been established. Indeed, the uniqueness of
the controller parameter is not guaranteed by proposition 6.3.3, as it was
in the SISO case. More research will be needed for the dynamics of
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MIMO adaptive control systems to be well-understood.

6.4 CONCLUSIONS

In this chapter, we first discussed how prior information may be used in
tpe context of identification. Then, we presented flexible indirect adap-
tive gqntrol schemes, and proved their global stability under a richness
condition on the exogeneous reference input. Applications to pole place-
ment and the factorization approach were discussed. We then turned to
the extension of model reference adaptive control schemes to MIMO
systems. After some preliminaries, we established a parameterization of
:the adaptive controller, following lines parallel to the SISO case. An
mnput error scheme was finally presented. More research will be needed
to better upderstand the dynamics of MIMO adaptive control schemes.
The combination of modern control theories based on factorization
approaches and of MIMO recursive identification algorithms in a flexible

indirect adaptive controller scheme is a promising area for further
developments and applications.



